
Generalization and Data Efficiency in Deep

Learning

Arnab Mondal

McGill University and Mila

Fall, 2020

©Arnab, 31/08/2020

Contents

1 Introduction 1

2 Generalization in Supervised Learning 2

2.1 Contractive Autoencoders . 2

2.2 Manifold Tangent Regularization . 4

3 Semi supervised learning 7

3.1 Generative Adversarial Networks (GANs) . 8

3.2 Semi-supervised Learning using an FM-GAN 9

3.3 Triple GAN . 10

3.4 Manifold Tangent Invariance for Semi-supervised Learning 11

3.5 Fixmatch . 12

4 Semi-supervised Meta-Learning 13

4.1 Graph Neural Networks . 14

4.2 Generalizing metric based meta-learning with GNNs 15

4.3 MetaGANs . 16

1 Introduction

This technical report has been divided into three main sections based on the topics cov-

ered. This report presents selected topics in data-efficiency and better generalization in

deep learning. Generalization in machine learning refers to a model’s ability to adapt to

new unseen data drawn from the same distribution as the one used to train the model.

Having a good generalization strategy helps the model to not overfit the training data

and to predict the unseen test data with reasonable accuracy. Regularization in machine

learning is a way to prevent overfitting by reducing the complexity of the model. By far,

the most common approach is L2 regularization, where the model minimizes the L2 norm

of its parameters along with the loss term, which measures how well the model fits the

data. The amount of regularization is usually controlled with a regularization coefficient

in the regularization term in the loss, to ensure the model does not overfit or underfit.

The problem of overfitting is more common in deeper models with higher capacity and

has been significantly reduced by modern regularization techniques like dropout [14].

Another way to improve generalization is by augmenting the dataset based on an aug-

mentation scheme, such as adding noise or transformations in the case of images. This

can be loosely viewed as a regularization technique. Note that in contrast to standard

regularization, which depends on the model parameters, augmentation depends on the

available dataset and its distribution. The first section of this report presents generaliza-

tion techniques based on the manifold of data [11] and shows how they can efficiently

boost the model’s performance [10]. It is in spirit closely related to the idea of augmen-

tation. These techniques can also prevent a classifier from adversarial attacks, where a

small perturbation in input can lead to an error with high confidence [6].

Having discussed generalization in a supervised setting, the next question is if it is

possible to use extra data samples without labels to regularize the model. In theory, the

more data points we have, the better the estimate of the manifold. This brings us to the

idea of semi-supervised learning. Although there are a plethora of traditional methods

1

for semi-supervised learning, the second section focuses on generative modelling and

understanding the data manifold. In particular, it reviews the idea of Feature Matching

and Triple Generative adversarial networks [1, 5, 12]. Towards the end of the section, the

ideas related to generalization using a data manifold are combined with semi-supervised

learning [9]. This leads to the idea of data efficiency of labelled samples, by leveraging

information from unlabelled samples. The motivation for this is that the acquisition of

labelled data can be both time-consuming and expensive depending on the task.

The final section discusses the generalization of a model to new tasks, with use of

knowledge from similar tasks when only a few labelled training samples of the new tasks

are available. In this report we consider supervised and semi-supervised tasks. This

is called “learning to learn“ or meta-learning. This can be thought of as an extension

of transfer learning which refers to training a model for new task using the knowledge

from the previously trained task. The final section focuses on the extension of ideas of

supervised meta-learning to the semi-supervised meta-learning [16]. It mainly deals with

metric-based meta-learning models. It also introduces the idea of graph neural networks

[8,15] and how they can be viewed as a generalization of other metric based meta-learning

approaches [4]. In particular, a variation of a graph attention network [15] is used to

generalize metric-learning based methods.

2 Generalization in Supervised Learning

2.1 Contractive Autoencoders

An AutoEncoder (AE) is composed of an encoder fθ : Rs → Rd and a decoder gφ : Rd →

Rs, where s is the dimension of the input, d is the dimension of the representation space

and θ & φ are the parameters of the encoder and the decoder respectively. It is a tech-

nique for both dimension reduction and representation learning, where the task of the

decoder is to reconstruct the input back from the low dimensional encodings. The hy-

pothesis is that the encodings retain enough information about the input to reconstruct

2

it back. In theory, with a complex nonlinear function approximator, fθ : Rs → Rd one

can obtain more useful lower-dimensional features compared to techniques like Principle

Component Analysis. The loss function of a basic autoencoder can be written as:

LAE = Ex∼PrR(gφ(fθ(x)), x)) (1)

where Pr(x) denote the density function of the real distribution and R denotes the recon-

struction error. Let the training set be (x(1), .., x(m)) and the reconstruction term R(x, y) =

||x− y||2, then the expression reduces to:

LAE =
1

m

m∑
i=1

R(gφ(fθ(x
(i))), x(i))) =

1

m

m∑
i=1

||gφ(fθ(x
(i)))− x(i))||2. (2)

One variation of this is an autoencoder with weight decay, which has an additional L2

norm of its weight in the loss. Another variation is a Denoising AutoEncoder (DAE),

where we pass a noisy input through the autoencoder and reconstruct its cleaner version.

Both the variations above are ways of regularizing the autoencoder. The loss function of

the denoising autoencoder looks like:

LDAE =
1

m

m∑
i=1

Ex̂∼Pn(x̂|x(i))||gφ(fθ(x̂))− x(i))||2 (3)

where the corrupted versions x̂ of examples x(i) are obtained from a stochastic corruption

process Pn(x̂|x(i)). Typical corruptions are additive isotropic Gaussian noise: x̂ = x(i) +

ε, ε ∼ N (0, σ2I) and a binary masking noise, where a fraction of randomly chosen input

components have their value set to 0.

Finally, we can regularize an autoencoder by making it robust to small perturbations

around the training data, which is called a Contractive AutoEncoder(CAE) [11]. This can

be achieved by minimizing the Jacobian term of the encoder with respect to the input.

3

The Jacobian term is given as:

||Jf (x)||2F =
s∑
i=1

d∑
j=1

(
∂fj(x)

∂xi
)2 (4)

where fj(x) is the j-th dimension of the encoder function fθ(x) and xi denotes the i-th

dimension of the input. This gives the entire loss function of a CAE as:

LCAE =
1

m

m∑
i=1

(||gφ(fθ(x
(i)))− x(i))||2 + λ||Jf (x(i))||2F) (5)

where λ controls the emphasis on the Jacobian regularization term. The Jacobian term

essentially tries to contract the local neighbourhood of a datapoint in the encoding space.

The reconstruction term prevents the neighbourhood’s contraction along the direction of

the manifold, to preserve enough information to differentiate between two nearby data

points. This can be further visualized by looking at the singular values of the Jacobian

Jf (x). Fig 1 shows that a trained CAE has fewer dominant directions, corresponding to

larger singular values, which suggests that it has successfully contracted the unnecessary

normal directions in the encoding space. Note that the Jacobian of the encoder gives the

local behaviour in this entire analysis, and a DAE can also be thought of as minimizing the

Jacobian ||Jf◦g(x(i))||2F . Rather than contracting the encoding space directly we contract

the output in a DAE and observe a similar behaviour of singular values, as shown in Fig

1.

2.2 Manifold Tangent Regularization

Manifold regularization or Jacobian regularization is a way to regularize the classifier

c : Rs → RK , where K is the dimension of output logits, by adding an extra Jacobian

term to the standard classifier loss, such as cross-entropy. This term is similar to the one

4

Figure 1: Average spectrum of the encoder’s Jacobian, for the CIFAR-bw dataset. Large

singular values correspond to the local directions of “allowed” variation learned from the

dataset. Taken from [11]

.

5

mentioned in the above section:

||Jc(x)||2F =
s∑
i=1

d∑
j=1

(
∂cj(x)

∂xi
)2. (6)

Adding this regularization term makes the classifier robust to local perturbations and has

also been shown to enhance its defence against adversarial attacks [6]. Although benefi-

cial, the need to backpropagate for each class output in a classifier makes this step com-

putationally expensive during training. Another way is to minimize the finite-difference

by taking a Monte Carlo estimate of it around an ε neighbourhood of each data point.

Although this kind of regularization makes the classifier robust, it comes at the cost of

losing some performance [3]. Intuitively this injects a local invariance to perturbations in

an open ball around data-points in the classifier.

Another way of using this idea is to only regularize and inject invariance along the

tangent direction of the data manifold [10]. This can be elegantly done by using ideas

from a CAE. The training of such classifiers can be divided into three major stages:

• Remove the final layer of the classifier (c), treat it as an encoder (fθ), design a decoder

and train using the CAE loss.

• Use the pretrained encoder fθ and obtain its Jacobian matrix Jf (x). Compute the

Singular Value Decomposition of Jf (x) = U(x)Σ(x)V (x)T and define two sets as a

function of x:

Bx = {Vk(x)|Σkk(x) > ε} & Hx = {x+ v|v ∈ span(Bx)} (7)

where Vk(x) is the k-th column of V (x), Σkk(x) denotes the k-th diagonal element of

Σ(x) and span(zk) = {x|x =
∑

k wkzk, wk ∈ R}. Essentially we just need to store Bx

for our calculations. Intuitively, we obtain those directions of the input’s manifold,

which gives an eigenvalue larger than a threshold. This obtains a basis of tangent

directions going by the CAE contraction argument.

6

• Once Bx is obtained, add the final layer and finetune the classifier with the added

datapoint dependent regularization term along with the standard cross-entropy

term:

R(x) =
∑
u∈Bx

||Jc(x)u||2. (8)

Note that, we are using the tangent basis vectors of each datapoint x to compress

the space spanned by them, and the term inside the norm is a linear transformation

of u to space of the gradients of encoding using the jacobian Jc(x).

This kind of regularization along the tangent direction of the manifold has shown promise

in boosting the performance of the classifier [10]. In particular, this can be helpful if the

labelled data is limited and unlabelled data is in abundance. At the end of the next section,

this idea is presented.

3 Semi supervised learning

Although there are several traditional ways to carry out semi-supervised learning, we

focus on using generative model-based ideas. Further, this section combines the idea of

semi-supervised learning with manifold tangent invariance. Towards the end of this sec-

tion, the current state-of-the-art method in semi-supervised learning is also discussed.

According to the semi-supervised learning hypothesis, learning aspects of the input dis-

tribution P (x) can improve models of the conditional distribution of the supervised target

P (y|x). This hypothesis suggests the possible benefits of using a generative model for a

semi-supervised setting. One naive approach is to pre-train the classifier as the encod-

ing network of an autoencoder using the entire dataset, and then the classifier (with a

final layer added) is trained with labelled data points. There are also methods to use a

Variational Autoencoder (VAE) [7] instead and carry out semi-supervised learning us-

ing it. However, this section reviews the methods that involve Generative Adversarial

Networks (GANs) [5].

7

3.1 Generative Adversarial Networks (GANs)

A GAN pairs a parameterized generator gφ, which learns to produce the output samples

from a target real distribution, with a parameterized discriminator dψ, which learns to

distinguish true data from the output of the generator. It is a two-player adversarial

optimization problem between a generator and a discriminator. The generator tries to fool

the discriminator, and the discriminator tries to keep from being fooled. The objective of

a GAN looks like:

min
gφ

max
dψ

L(gφ, dψ) = Ex∼Pr(x)[log dψ(x)] + Ez∼P (z)[log(1− dψ(gφ(z)))] (9)

where Pr(x) denotes the density function of the real distribution and P (z) denotes the

density function of the input noise. It can be noted that the first term has no impact

on gφ during the optimizer update. The ideal maxima for the discriminator of a GAN

is d∗ψ(x) = Pr(x)
Pr(x)+Pg(x)

∈ [0, 1] where Pg(x) is the density function of generated samples.

Substituting that in L(gφ, d
∗
ψ) =

∫
x
(Pr(x) log Pr(x)

Pr(x)+Pg(x)
+ Pg(x) log Pg(x)

Pr(x)+Pg(x)
)dx, we get:

L(gφ, d
∗
ψ) = JS(Pr,Pg) − 2 log 2 where JS() is the Jensen-Shannon Divergence, Pr is real

and Pg is the generator distribution. This means that the GAN generator essentially opti-

mizes the JS divergence when the discriminator achieves optimality. Training GANs can

be challenging as the discriminator converges quickly and this can lead to vanishing gra-

dients of the generator. One way to alleviate this, as presented in the original paper [5], is

to use a non-saturating loss for the generator, i.e, maxgφ Ez∼P (z)[log(dψ(gφ(x)))]. Although

this fixes the vanishing gradients of the generator, the training updates are still unstable.

This leads to a Feature Matching (FM) GAN [12], which makes the GAN training stable.

The standard generator loss of the GAN is replaced by a feature matching loss in this

case, which is given by: mingφ ||Ex∼Pr(x)f(x) − Ez∼P (z)f(gφ(z))||22 where f() is the feature

extracted from the pre-final layer of the discriminator dψ. However this stability comes

at the cost of reduction in generated sample quality as the generator now simply matches

the average statistics of the extracted features [12].

8

3.2 Semi-supervised Learning using an FM-GAN

A byproduct of using an FM-GAN [12] is its improved semi-supervised learning ability.

There is an elegant way to show one can learn from unlabelled data using this GAN

based generative modelling framework. A standard classifier cψ : Rs → RK classifies a

data point x into one of K possible classes and outputs a K-dimensional vector of logits

[l1, . . . , lK], that can be turned into class probabilities by applying the softmax: pcψ(y =

j|x) =
exp(lj(x))∑K
k=1 exp(lk(x))

. In supervised learning, such models are trained by minimizing the

cross-entropy between the observed labels and the model predictive distribution pcψ(y =

j|x). For semi-supervised learning, one simply adds samples from the generator gφ to the

data set, labeling them with a new class y = K + 1, while correspondingly increasing the

dimension of the classifier output from K to K + 1. Then pcψ(y = K + 1|x) can be used as

the probability that x is fake, corresponding to 1− dψ(x) in the original GAN framework.

The objective that the classifier which is also used as a discriminator maximizes is:

max
cψ

L(cψ, gφ) = Ex,y∼Pr(x,y) log pcψ(y|x, y < K + 1) + Ex∼Pr(x) log[1− pcψ(y = K + 1|x)]

+ Ez∼P (z) log[pcψ(y = K + 1|gφ(z))]

(10)

The first term is the supervised loss, the second term is the unlabelled loss, and the third is

the loss coming from the fake samples. Intuitively the classifier tries to label the labelled

samples to its class, the unlabelled samples as one from the real classes and the fake

sample as the K + 1-th class. As the classifier with K + 1 outputs is over-parameterized,

we can set lK+1(x) = 0 ∀x which reduces the first term in Equation 10 to a standard

cross-entropy loss, and any classifier can be used in this setting. It has been observed that

the feature matching loss of the generator suits semi-supervised learning as less realistic

samples give a better decision boundary for a discriminator, which is the classifier in this

case [12].

9

3.3 Triple GAN

A Triple GAN [1] solves the problem of poor generated sample quality faced by an FM

GAN by decoupling the classifier and the discriminator. It also gives comparable semi-

supervised learning performance. Unlike an FM-GAN, now we have three networks: a

class conditional generator gφ, a joint discriminator dθ and a classifier cψ (which outputs

a K-dimensional vector of logits [l1, . . . , lK] like in Section 3.2). Two major differences

from standard GANs are that it uses a generator that is conditioned on the class and a

discriminator, which labels the joint distribution as true or fake. There are three players,

and the overall adversarial objective becomes:

min
gφ,cψ

max
dθ

L(gφ, cψ, dθ) =Ex,y∼Pr(x,y)[log dθ(x, y)] + αEx∼Pr(x)[log(1− dθ(x, yc))]

+ (1− α)Ez∼P (z),y∼U(K)[log(1− dθ(gφ(z, y), y))]

(11)

where U(K) refers to a uniform distribution over K classes, yc = argmaxi li(x) and

α ∈ (0, 1) denotes the relative importance of classification and generation. Notice that the

classifier is treated as a pseudo-label generator in the above framework and yc can be sam-

pled instead of taking argmax. The expression of joint distributions of the generator and

the classifier is Pcψ(x, y) = Pr(x)Pcψ(y|x) and Pgφ(x, y) = P (y)Pgφ(x|y). While the first ex-

pression is straightforward, the second equation is obtained assuming y ∼ P (y) = U(K)

and distribution P (z) is transformed to Pgφ(x|y) by gφ given the label y. This game

achieves its equilibrium if and only if Pr(x, y) = (1 − α)Pgφ(x, y) + αPcψ(x, y). As this

doesn’t guarantee Pr(x, y) = Pgφ(x, y) = Pcψ(x, y), the standard crossentropy term is

added in the classifier loss [1]. In practice once the generator is well trained, the gener-

ated samples are also passed through the classifier and the cross entropy loss is computed

which further regularizes the network. The final classifier loss is:

min
cψ
{L(gφ, cψ, dθ)− Ex,y∼Pr(x,y) log pcψ(y|x)− Ez∼P (z),y∼U(K) log pcψ(y|gφ(z, y))}. (12)

10

A Triple GAN gives performances comparable to FM GAN and successfully generates

realistic looking samples.

3.4 Manifold Tangent Invariance for Semi-supervised Learning

The GAN based semi-supervised learning methods can be improved further using the

regularization ideas discussed in the previous section. In theory, we can estimate the man-

ifold tangent directions from the entire dataset as long as we use an encoding-decoding

architecture with Jacobian regularization of the encoder. In [9], a BiGAN [3] has been used

for this task, and this has boosted FMGAN based semi-supervised learning. A BiGAN has

an encoder fθ, a generator or decoder gφ and a joint discriminator dη. The objective of a

BiGAN is given by:

min
fθ,gφ

max
dη

L(fθ, gφ, dη) = Ex∼Pr(x)[log dη(x, fθ(x)] + Ez∼P (z)[log(1− dη(gφ(z), z))]. (13)

Training a biGAN can lead to convergence issues; hence [9] suggests using feature match-

ing for training its encoder and generator instead, along with a modified adversarial loss

for the discriminator. Hence, the objective of the encoder and generator becomes:

min
fθ,gφ
||Ex∼Pr(x)d̂(x, fθ(x))− Ez∼P (z)d̂(gφ(z), z)||22 + Ex∼Pr(x)||Jf (x)||2F (14)

and that of the discriminator:

max
dη

Ex∼Pr(x)[logdη(x, fθ(x)] + Ez∼P (z)[log(1− dη(gφ(z), z))]+

Ex∼Pr(x)[log(1− dη(gφ(fθ(x)), fθ(x)))]

(15)

where d̂ represents the extracted features from the pre-final layer of the discriminator. Af-

ter training the BiGAN, the manifold tangent basis set Bx can be obtained as described in

Subsection 2.2. Notice that this entire process could have also been carried out just with

a simple autoencoder but using a BiGAN leads to the reuse of the trained generator gφ.

11

Once this is obtained, one can train a semi-supervised FM GAN as described in Subsec-

tion 3.2 and add the additional regularization terms in the classifier loss given in Equation

10. The final classifier loss becomes:

min
cψ
{−L(cψ, gφ) + λ1Ex∼Pr(x)

∑
u∈Bx

||Jc(x)u||2 + λ2Ex∼Pr(x)||Jc(x)||2F} (16)

The last term tries to contract the network in every direction from a point on data man-

ifold, which results in robustness to perturbations. λ1 and λ2 controls the amount of

regularization we need in an FMGAN. In a low data setting, with several unlabelled ex-

amples that result in a reasonable estimate of the manifold tangents, regularizing along

the tangent direction can be quite useful [9].

3.5 Fixmatch

Apart from generative modelling based methods, one of the most straightforward ideas

in semi-supervised learning is to use consistency regularization and pseudo-labelling.

Consistency regularization utilizes unlabeled data by assuming that the model should

output similar predictions when fed perturbed versions of the same input. In large scale

image based models, a stronger form of augmentation such as RandAugment [2] is used.

Pseudo-labeling leverages the idea of the use of the model itself to obtain artificial labels

for unlabeled data. It gives a hard label, the argmax of the model’s output, to the data

samples, where the largest class probability is above a certain threshold. Note that as the

pseudo labels of the samples are used to compute their cross-entropy loss, this idea is

closely related to entropy minimization. Now Fixmatch combines both these ideas and

uses an objective given by (using notations from Subsection 3.2):

min
cψ

Ex,y∼Pr(x,y) log pcψ(y|α(x)) + Ex∼Pr(x)I(max li(x) > τ) log pcψ(yc|A(x)) (17)

12

where α() & A() refer to weak & strong augmentation, yc = argmaxi li(x) and I is the

indicator function which decides which unlabelled samples to consider. Note that weak

augmentation refers to simple cropping, reflection and rotation for image input. A simple

architecture like this, combined with a ResNet backbone, can give state-of-the-art perfor-

mance [13].

4 Semi-supervised Meta-Learning

Meta-learning, also known as “learning to learn”, refers to a class of learning algorithms

that can learn new skills or adapt to new environments rapidly with a few training exam-

ples, inspired by how humans learn. They can further be metric-based, like learning an

efficient distance metric, or model-based, such as recurrent networks with external and

internal memory or optimization-based where the model parameters are optimized for

faster learning. Metric based methods and how they can be extended for semi-supervised

tasks are explained in this section. Before looking at the algorithms, it is important to

define the problem of meta-learning and semi-supervised meta-learning. In a typical

meta-learning setting, the dataset consisting of N classes is divided in Ntrain and Ntest

classes. To form ntrain training episodes or tasks {Ti}ntraini=0 of Z-shot K-way one need to

sample K classes from Ntrain classes. From these K class datasets, Z labelled instances

of each class are chosen for the labelled support set: Sil = {(x1, y1), ..., (xZ×K , yZ×K}, M

labelled instances are chosen for the query set: Qi
l = {(x1, y1), ..., (xM , yM} and R unla-

belled instances are chosen for the unlabelled support set: Siu = {x1, ..., xR}. Note that the

set Sil , Q
i
l and Siu are mutually exclusive. We can similarly form ntest testing episodes or

tasks {Ti}ntesti=0 from Ntest classes for testing our meta-learner. In supervised meta-learning,

R = 0 for both training and testing episodes. Before getting into the details of training

these models,we review Graph Neural Networks (GNNs) which are required for gener-

alizing the metric based meta-learning ideas.

13

4.1 Graph Neural Networks

This section presents GNNs in their most simple message passing form. A GNN frame-

work takes an input graph G = (V , E), along with a set of node features X ∈ Rd×|V|, and

uses this information to generate node embeddings zu,∀u ∈ V . The message passing

update in most general form can be expressed as:

h(k+1)
u = update(k)(h(k)

u , aggregate(k)(h(k)
v ,∀v ∈ N (u)) (18)

where the update(k)() and aggregate(k)() can be a whole range of functions and N (u) de-

notes the neighbours of u. Since the aggregate(k)() function takes a set as input, GNNs de-

fined in this way are permutation equivariant by design. The most basic choice aggregate(k)()

function is addition scaled by some normalization factor like symmetric degree normal-

ization and that of update(k)() is weighted addition. The vector expression for this looks

like:

H(k+1) = σ(H(k)W
(k)
self +D−1/2AD−1/2H(k)W

(k)
neigh + b(k)) (19)

where h(k)
u is placed row-wise to form H(k), A is the adjacency matrix (without self con-

nection), D is the degree matrix (Dii =
∑

j Aij), W
(k)
self & W

(k)
neigh are the weight matrices,

b(k) is the bias and σ() is a nonlinearity. When W
(k)
self & W

(k)
neigh are shared this reduces to

the standard Graph Convolution Networks (GCNs) [8]. The aggregate() function can be

further generalized by using an attention mechanism [15] given by:

aggregate(hv,∀v ∈ N (u) =
∑

v∈N (u)

αu,vWneighhv (20)

and the attention can be computed as:

αu,v =
exp(σ(aT [Whu

⊕
Whv])))∑

v̄∈N (u) exp(σ(aT [Whu
⊕

Whv̄])))
(21)

14

where a is a trainable attention vector, W is a trainable matrix, σ() is a non-linearity and⊕
denotes the concatenation operation. Note that the superscript denoting the iteration

is omitted in the above equations for notational brevity. Having defined the aggregate()

like this, one can replace the weighted addition in the update() with concatenation fol-

lowed by a linear layer or a linear layer for the self features and then concatenate with

aggregated features. If the adjacency matrix of GNN contains self-connection then self

attention is computed, and the update() function only passes the aggregated features

making it a Graph Attention Network (GAT). [15]

4.2 Generalizing metric based meta-learning with GNNs

For using a GNN in meta-learning which typically uses image datasets, the images have

to be brought to a feature space using a shared encoder fθ(). During training in an episode

for supervised meta-learning, once the encoded features are obtained, they are appended

with corresponding one hot labels for labelled support images and uniform confidence

for query images. For support images, final feature representations are obtained by

x = [fθ(x)
⊕

h(y)] ∀(x, y) ∈ Sil where
⊕

denotes the concatenation and h() denotes the

one-hot function. While for query images they are obtained by x = [fθ(x)
⊕

K−11K]

∀(x) ∈ Qi
l where 1K is the K-dimensional one vector. These are further passed through

a densely connected GNN, and loss is computed at the output of the query images. The

optimization objective for an episode becomes:

L(Ti) =
M∑
k=1

−logP (yk|xk, Ti) ∀(xk, yk) ∈ Qi
l (22)

where this negative log-likelihood is computed based on the output logits at the query

nodes. The GNN used is essentially similar to a graph attention network with attention

interpreted as the metric. The distance metric between two feature vectors is computed

15

as δθ̂(|xu − xv|), where δθ̂() is a MLP, which gives the attention weights:

αu,v =
exp(−δθ̂(|xu − xv|))∑

v̄∈N (u) exp(−δθ̂(|xu − xv̄|))
(23)

Now the vector form of the final update equation used in [4] is:

H(k+1) = σ(H(k)W
(k)
self +AH(k)W

(k)
neigh + b(k)) (24)

where Au,v = αu,v is the attention matrix. This encoder, followed by an attention based

GNN, generalizes all the existing metric-based meta-learning as it has a non-linear metric

that is learned during the training. This idea also naively exploits the unlabelled samples

from the support set by obtaining their feature vector as x = [fθ(x)
⊕

K−11K] ∀(x) ∈ Siu
and passing them through the GNN. The loss for this setting is still the negative log-

likelihood computed at the query nodes, but having connections to unlabelled samples

allows information flow from them to generalize the model further.

4.3 MetaGANs

A MetaGAN [16] uses the same idea of feature matching based semi-supervised learn-

ing from Section 3.2. It uses all the unlabelled images in each task in the query set to

backpropagate the unsupervised loss and further regularize the model. This technique

is meta-learner agnostic and only provides a way to incorporate losses from unlabelled

samples in training. For this section, consider unsupervised query sets Qi
u = Siu for each

task Ti. Every task has an K + 1-th class for the fake samples. To generate fake data that

is close to the real data manifold in one specific task Ti, there is an instance encoder eθ()

which takes x ∈ Sil and outputs an encoded vector eθ(x). The encoded vectors are aggre-

gated using an average pooling operator to give a task representation hTi . NowR random

z(∼ P (z)) are sampled and a conditional generator gφ(z, hTi) gives R generated samples

which are stored in a set Qi
g. As the meta-learner model is used as a discriminator in this

16

setup, the loss functions become:

Llab(Ti) =
M∑
k=1

−logP (y = yk|xk, yk ≤ K, Ti) ∀(xk, yk) ∈ Qi
l (25)

Lunlab(Ti) =
R∑
k=1

−logP (y ≤ K|xk, Ti) ∀(xk) ∈ Qi
u (26)

Lfake(Ti) =
R∑
k=1

−logP (y = K + 1|xk, Ti) ∀(xk) ∈ Qi
g (27)

Adding the above three losses gives the total loss of the model. Apart from this, the gen-

erator and the encoder are trained by either minimizing the non saturating loss function:

Lgen(Ti) =
R∑
k=1

−logP (y ≤ K|xk, Ti) ∀(xk) ∈ Qi
g (28)

or minimizing the Feature Matching loss, as mentioned in Section 3.2. In contrast to GNN

based semi-supervised meta-learning, a MetaGAN provides a way to compute loss for

the unlabelled samples, which is then used to backpropagate gradients. Often this can be

more beneficial than naively pulling information from unlabelled data using a graph. As

both ideas are complementary, their combination can potentially lead to better models.

Whether simple ideas like Fixmatch can be combined with GNN based meta-learner is

an open question. Finally, all this makes semi-supervised meta-learning both an exciting

and active area of research.

References

[1] CHONGXUAN, L., XU, T., ZHU, J., AND ZHANG, B. Triple generative adversarial

nets. In Advances in neural information processing systems (2017), pp. 4088–4098.

17

[2] CUBUK, E. D., ZOPH, B., SHLENS, J., AND LE, Q. V. Randaugment: Practical auto-

mated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops (2020), pp. 702–703.

[3] DONAHUE, J., KRÄHENBÜHL, P., AND DARRELL, T. Adversarial feature learning.

arXiv preprint arXiv:1605.09782 (2016).

[4] GARCIA, V., AND BRUNA, J. Few-shot learning with graph neural networks. arXiv

preprint arXiv:1711.04043 (2017).

[5] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D.,

OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets. In Ad-

vances in neural information processing systems (2014), pp. 2672–2680.

[6] JAKUBOVITZ, D., AND GIRYES, R. Improving dnn robustness to adversarial attacks

using jacobian regularization. In Proceedings of the European Conference on Computer

Vision (ECCV) (2018), pp. 514–529.

[7] KINGMA, D. P., AND WELLING, M. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 (2013).

[8] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907 (2016).

[9] KUMAR, A., SATTIGERI, P., AND FLETCHER, T. Semi-supervised learning with gans:

Manifold invariance with improved inference. In Advances in Neural Information Pro-

cessing Systems (2017), pp. 5534–5544.

[10] RIFAI, S., DAUPHIN, Y. N., VINCENT, P., BENGIO, Y., AND MULLER, X. The man-

ifold tangent classifier. In Advances in neural information processing systems (2011),

pp. 2294–2302.

[11] RIFAI, S., VINCENT, P., MULLER, X., GLOROT, X., AND BENGIO, Y. Contractive

auto-encoders: Explicit invariance during feature extraction. In Icml (2011).

18

[12] SALIMANS, T., GOODFELLOW, I., ZAREMBA, W., CHEUNG, V., RADFORD, A., AND

CHEN, X. Improved techniques for training gans. In Advances in neural information

processing systems (2016), pp. 2234–2242.

[13] SOHN, K., BERTHELOT, D., LI, C.-L., ZHANG, Z., CARLINI, N., CUBUK, E. D.,

KURAKIN, A., ZHANG, H., AND RAFFEL, C. Fixmatch: Simplifying semi-supervised

learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020).

[14] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., AND SALAKHUT-

DINOV, R. Dropout: a simple way to prevent neural networks from overfitting. The

journal of machine learning research 15, 1 (2014), 1929–1958.

[15] VELIČKOVIĆ, P., CUCURULL, G., CASANOVA, A., ROMERO, A., LIO, P., AND BEN-

GIO, Y. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).

[16] ZHANG, R., CHE, T., GHAHRAMANI, Z., BENGIO, Y., AND SONG, Y. Metagan: An

adversarial approach to few-shot learning. In Advances in Neural Information Process-

ing Systems (2018), pp. 2365–2374.

19

	Introduction
	Generalization in Supervised Learning
	Contractive Autoencoders
	Manifold Tangent Regularization

	Semi supervised learning
	Generative Adversarial Networks (GANs)
	Semi-supervised Learning using an FM-GAN
	Triple GAN
	Manifold Tangent Invariance for Semi-supervised Learning
	Fixmatch

	Semi-supervised Meta-Learning
	Graph Neural Networks
	Generalizing metric based meta-learning with GNNs
	MetaGANs

