
Deep Reinforcement Learning
using Structure and

Symmetries of the World

Arnab Kumar Mondal
Doctor of Philosophy

School of Computer Science
McGill University

Montreal, Quebec, Canada

October 13, 2024

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Doctor of Philosophy

©Arnab Kumar Mondal, 2024

Abstract

Learning meaningful abstract representations of data is an open problem in
Deep Reinforcement Learning. The majority of the present algorithms rely
on reward signals to learn such representations. In this thesis, we develop
a novel perspective to address this problem by leveraging the structure and
symmetries of observations and actions. First, we consider a setup where
known symmetries of the Markov Decision Process can be used to improve
sample efficiency and generalization through Equivariant Neural Networks.
However, enforcing layer-wise equivariance can be computationally expensive
and can limit the choice of network architecture. We propose a more scalable
method to build equivariance while using any existing architecture, based on
learning canonical orientations of the data samples. An extension of this idea
provides a simple and efficient way to make any pre-trained large model robust
to transformations of the input data. We demonstrate the efficacy of this
method in different data domains and tasks including Deep Reinforcement
Learning, where it improves the generalization performance of any pre-trained
agent. Next, we move to a more challenging scenario where both the symmetry
groups and their actions on the data are unknown, but where we have an
agent whose interactions are given by the transformation of the observations
of the environment. We provide methods to learn equivariant representations
from interactive environments using novel self-supervised objectives in both
Euclidean and non-Euclidean representation spaces. This leads to a latent
space that mirrors the structure of the data, while providing a strong inductive
bias, resulting in improved sample efficiency. We end by connecting this idea
to Koopman’s Theory for dynamics modeling, demonstrating its use for
building an efficient long-range dynamics model for Reinforcement Learning
and Model-based Planning.

i

Abrégé

L’apprentissage de représentations abstraites significatives des données est un
problème ouvert en Apprentissage par Renforcement Profond. La majorité des
algorithmes actuels s’appuient sur des signaux de récompense pour apprendre
de telles représentations. Dans cette thèse, nous développons une perspective
novatrice pour aborder ce problème en exploitant la structure et les symétries
des observations et des actions. Tout d’abord, nous considérons un cadre où
les symétries connues du Processus de Décision Markovien peuvent être util-
isées pour améliorer l’efficacité d’échantillonnage et la généralisation grâce aux
Réseaux de Neurones Équivariants. Cependant, l’application de l’équivariance
couche par couche peut s’avérer coûteuse en termes de calcul et peut restrein-
dre le choix de l’architecture du réseau. Nous proposons une méthode plus
évolutive pour construire l’équivariance tout en utilisant n’importe quelle
architecture existante, basée sur l’apprentissage d’orientations canoniques des
échantillons de données. Une extension de cette idée fournit un moyen simple
et efficace de rendre tout grand modèle pré-entraîné robuste aux transforma-
tions des données d’entrée. Nous démontrons l’efficacité de cette méthode
dans différents domaines de données et tâches, y compris l’Apprentissage par
Renforcement Profond où elle améliore la performance de généralisation de
tout agent pré-entraîné. Ensuite, nous passons à un scénario plus complexe
où les groupes de symétrie et leurs actions sur les données sont inconnus, mais
où nous avons un agent dont les interactions sont données par la transfor-
mation des observations de l’environnement. Nous fournissons des méthodes
pour apprendre des représentations équivariantes à partir d’environnements
interactifs en utilisant de nouveaux objectifs auto-supervisés dans des espaces
de représentation euclidiens et non euclidiens. Cela conduit à un espace latent
qui reflète la structure des données, tout en fournissant un biais inductif
fort, résultant en une amélioration de l’efficacité d’échantillonnage. Nous
terminons en reliant cette idée à la Théorie de Koopman pour la modélisation
dynamique, démontrant son utilisation pour la construction d’un modèle

ii

dynamique à long terme efficace pour l’Apprentissage par Renforcement et la
Planification Basée sur un Modèle.

iii

Contributions to Original
Knowledge

This thesis makes novel contributions towards understanding the role of
equivariance and transformation-aware algorithms in improving the sample
complexity and generalization of deep reinforcement learning. Broadly, it
provides two ways to enforce equivariance in the learned representations: first,
through new efficient methods to build neural networks, and second, through
different loss functions that enforce structure in the latent space. Specifically,
I make the following contributions:

1. Formalizing the symmetry in the MDP construct and its connections
to equivariance in Action-Value (Q) and policy networks in Deep Rein-
forcement Learning.

2. Providing empirical evidence of sample efficiency and better generaliza-
tion in DRL with equivariant architectures.

3. Developing simpler and less constrained ways to design equivariant
models using canonicalization of the data, and creating an open-source
library for this purpose: https://github.com/arnab39/equiadapt.

4. Introducing novel techniques to learn equivariant representations in
interactive environments using loss constraints when the symmetry
group is unknown.

5. Proposing efficient long-range dynamics modeling from a Koopman
theory perspective and exploring its connections to symmetry learning.

iv

https://github.com/arnab39/equiadapt

Contributions of Authors

• Chapters 1 and 2: These chapters provide the introduction and
the necessary technical background for this thesis. Both chapters are
written by me.

• Chapter 3: This chapter is based on (Mondal et al., 2020), which is
presented at the ICML BIG workshop 2020. I led the project, developed
the idea, conducted all the experiments, and wrote the entire paper.

• Chapter 4: This chapter is based on (Kaba et al., 2023), which is
presented at ICML 2023. Oumar and I independently arrived at the
idea, with Oumar’s version being more general. We collaborated on
the theoretical aspects, including some proofs, although Oumar wrote
most of the theory section in the paper. I contributed to the writing
and handled most of the experiments, including those on images and
point clouds.

• Chapter 5: This chapter is based on (Mondal et al., 2024), which
is presented at NeurIPS 2023. I led the project, conceived the idea,
designed the experiments and wrote the majority of the paper. I also
ran the point cloud experiments and some initial image experiments.

• Chapter 6: This chapter is based on (Mondal et al., 2022), which is
presented at ICML 2022. Siamak and I jointly came up with the idea of
learning equivariance for RL using Lie Groups. I contributed to writing
the paper, designing experiments, and scaling them.

• Chapter 7: This chapter is based on (Shakerinava et al., 2022), which
is presented at NeurIPS 2022. Siamak came up with the idea of group
invariant loss to learn equivariant representations. Siamak and Mehran
wrote the initial version of the paper with preliminary experiments to

v

validate the idea. I contributed to rewriting of the paper and added
several new experiments, including applying the idea to RL and world
modeling.

• Chapter 8: This chapter is based on (Mondal et al., 2023), which is
presented at ICLR 2024. I conceived the idea, wrote the code, and ran
the dynamics modeling experiments. I also provided Siba with the code
for model-free RL experiments and wrote the majority of the paper.

PhD Publications. List of all publications where I was the primary con-
tributor (* denotes joint first author).

Publications that are used to write this thesis:

• A Mondal, P Nair, K Siddiqi. Group Equivariant Deep Reinforce-
ment Learning, Presented at ICML 2020 Workshop on Inductive Bias,
Invariance and Generalization in RL (Chapter 3)

• A Mondal, V Jain, K Siddiqi, S Ravanbakhsh Eqr: Equivariant rep-
resentations for data-efficient reinforcement learning. In International
Conference on Machine Learning, pp. 15908–15926. PMLR, 2022.
(Chapter 6)

• M Shakerinava*, A Mondal*, S Ravanbakhsh Structuring representa-
tions using group invariants. Advances in Neural Information Processing
Systems, 35:34162–34174, 2022 (Chapter 7)

• SO Kaba*, A Mondal*, Y Zhang, Y Bengio, S Ravanbakhsh Equivari-
ance with learned canonicalization functions. In International Conference
on Machine Learning, pp. 15546–15566. PMLR, 2023 (Chapter 4)

• A Mondal*, SS Panigrahi*, SO Kaba, S Rajeswar, S Ravanbakhsh
Equivariant adaptation of large pretrained models. Advances in Neural
Information Processing Systems, 36, 2023 (Chapter 5)

• A Mondal, SS Panigrahi, S Rajeswar, K Siddiqi, S Ravanbakhsh Ef-
ficient dynamics modeling in interactive environments with koopman
theory. In The Twelfth International Conference on Learning Represen-
tations, 2024. (Chapter 8)

vi

Publications that are not included but contributed to new knowledge:

• A Mondal, D Tome, S Alletto HumMUSS: Human Motion understand-
ing using State Space Models Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2024

• KK Agrawal*, A Mondal*, A Ghosh*, B Richards α-ReQ: Assessing
Representation Quality in Self-Supervised Learning by measuring eigen-
spectrum decay., Advances in Neural Information Processing Systems,
35, 17626-17638

• A Mondal*, V Jain*, K Siddiqi. Mini-batch Similarity Graphs for
Robust Image Classification, In Proceedings of the 2021 British Machine
Vision Conference (BMVC 2021). BMVC, 2021

vii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my
supervisors, Kaleem and Siamak. Kaleem, thank you for believing in me
and providing me the opportunity to pursue my PhD in your group at
McGill. Your nurturing approach, treating each student as your own, has
been invaluable. I am particularly grateful for the trust you placed in my
abilities, allowing me the freedom to explore areas beyond your immediate
research interests. Siamak, your guidance in structuring my thoughts and
crafting quality Machine Learning research papers has been instrumental.
Joining your group at Mila in my second year marked a significant turning
point in my PhD journey, exposing me to a vibrant community of students in
Mila with a shared interest in Machine Learning. Moreover, your expertise
in Geometric Deep Learning has made a significant positive impact on the
quality of research I pursued during my PhD.

I would also like to thank Marc for serving on my PhD committee, and
Doina and Robin for providing detailed feedback and constructive comments
as the internal and external thesis examiners, respectively. Your insights and
evaluations have greatly enhanced the quality of this thesis.

This thesis would not have been possible without the contributions of my
collaborators and co-authors: Oumar, Siba, Mehran, Vineet, Pratheeksha, Sai,
Yan, and Yoshua. Your support has made the often solitary PhD experience
far more manageable and enriching. I’ve learned immensely from each of you,
and your assistance has significantly lightened my workload, allowing me to
accomplish more than I could have alone. I owe special thanks to Oumar
and Siba, whose drive has been crucial in advancing our research agenda of
building architecture-agnostic equivariant models over the past two years.

Beyond my primary research, I extend my heartfelt appreciation to Arna
and Kumar Krishna. Our collaboration on the power-law project has signifi-
cantly enhanced my intuition in representation learning. I am also indebted
to the students from Siamak and Kaleem’s labs - Victor, Hugo, Tara, Daniel,

viii

Kusha, Christopher, Jikael, Mohammad, Yanan, Bridget, Chris, Megan, Marc,
Tabish, Jacob, Ben, Chu, Morteza, and Mahsa - for our stimulating discussions
and collaborations.

To my Montreal friends who shared this journey - Raul, Nour, Komal,
Arna, Zahraa, Tejas, Ishita, Ayush, Lucie, Solenn, Léa, Sarath, Sarthak,
Dishank and Sangnie - thank you for making my PhD experience memorable.
Raul, your companionship during the challenging times of COVID-19 was
a lifeline, and I am deeply appreciative of your support. Thanks to Komal,
Arna and Sarath for celebrating my first birthday away from home in Canada.
Many thanks to Tejas and Arna for making the last few months of my PhD
journey in Montreal amazing.

I owe immense gratitude to my parents, Sanjib and Luton, who have
consistently supported my aspirations, even during financial hardships. As
their only child, their decision to let me pursue my dreams far from home
was a profound act of love and sacrifice. To Danielle, thank you for bringing
joy to my workaholic life and for your active support in open-sourcing my
PhD projects. Your love and encouragement have been invaluable.

Lastly, I want to acknowledge my family members who have taken such
pride in my achievements as the first PhD holder in our family. Your support
has emphasized the importance of research and higher education for our
future generations. This PhD journey has been transformative, and I am
profoundly grateful to everyone who has been part of it.

ix

Contents

I Introduction and Background 1

1 Introduction 2
1.1 Thesis Outline . 5
1.2 Preview of Main Results and Insights 7

2 Background 9
2.1 Machine Learning and Deep Learning 10
2.2 Groups and their representation theory 11
2.3 Equivariance in Deep Learning 14
2.4 Markov Decision Processes . 16

2.4.1 Reinforcement Learning 17
2.4.2 MDP Homomorphism 17
2.4.3 Symmetric MDPs . 19

2.5 Deep Reinforcement Learning 20

II Leveraging Known Symmetry Transformations 22

3 Group Equivariant Deep Reinforcement Learning 23
3.1 Related Work . 24
3.2 Background . 25

3.2.1 E(2)-equivariant convolution 25
3.2.2 Choice of group and feature fields 26

3.3 Equivariance in RL . 27
3.3.1 Equivariance in Vectorized Policies 27
3.3.2 Choice of the Environment 28

x

3.3.3 Equivariant Deep Q-Network Design 30
3.3.4 Network Architecture 31

3.4 Experiments . 33
3.5 Discussion . 35

4 Equivariance Through Canonicalization 38
4.1 Canonicalization Functions . 40

4.1.1 General Formulation 40
4.1.2 Partial Canonicalization 41

4.2 Design of Canonicalization Functions 44
4.2.1 Euclidean Group . 45

4.3 Experiments . 47
4.3.1 Image classification . 47
4.3.2 N -body dynamics prediction 51
4.3.3 Point cloud classification and segmentation 54

4.4 Related Works . 56
4.5 Discussion . 58

5 Equivariant Adaptation of Large Pretrained Models 60
5.1 Deeper Dive Into Canonicalization 62

5.1.1 Learning Canonicalization, Augmentation and Alignment 62
5.1.2 Canonicalization Prior 66

5.2 Image Experiments . 70
5.2.1 Classification . 70
5.2.2 Instance Segmentation 73
5.2.3 Reinforcement Learning 74

5.3 Point Cloud Experiments . 75
5.4 Discussion . 76

III Learning Structured Representations 78

6 Equivariant Representations using Loss Constraints on Lie
Groups 79
6.1 Desiderata for Symmetry-Based Representation in RL 80

6.1.1 Implementing parameterization 85
6.2 Symmetry Enforcing Loss Functions 86
6.3 Application to Model-free RL 88

xi

6.3.1 Putting it All Together 90
6.4 Experiments . 91
6.5 Related work . 96
6.6 Discussion . 97

7 Equivariant Representations using Group Invariants 99
7.1 Actions in the latent space matter more in equivariant models 101
7.2 Symmetry Regularization Objectives 103

7.2.1 Practical Implementation 104
7.3 Experiments . 105

7.3.1 Qualitative Analysis 105
7.3.2 Quantitative Evaluation in Downstream Tasks 107

7.4 Related Works . 110
7.5 Discussion . 111

8 Learning representations using Koopman Theory 113
8.1 Background . 115

8.1.1 Koopman Theory for Dynamical Systems 115
8.1.2 Approximate Koopman with Control Input 116

8.2 Dynamics Model . 118
8.2.1 Linear Latent Dynamics Model 118
8.2.2 Diagonalization, Efficiency and Stability of the Koop-

man Operator . 120
8.3 Dynamics modeling in RL and Planning 122

8.3.1 Forward dynamics modeling in RL 122
8.3.2 Koopman Self-Predictive Representations 123
8.3.3 Model-based Planning 123
8.3.4 Koopman TDMPC . 124

8.4 Experiments . 125
8.4.1 Long-Range Dynamics Modeling with Control 125
8.4.2 Koopman Dynamics Model for RL and Planning 127

8.5 Related Work . 130
8.6 Discussion . 131

IV Concluding Remarks 133

9 Conclusion and Future Work 134

xii

List of Figures

3.1 If we denote the 90 degree clockwise rotation by r and reflection over the
vertical axis as t, then the group elements of D4 are {e, r, r2, r3, t, tr, tr2, tr3}
where e is the identity action. These panels show the action of these
group elements (transformations) on a game screen and how they affect
the optimal policy (shown by white arrows). 29

3.2 Juxtaposed Network architecture 31
3.3 Plots of the evolution of average rewards with the number of episodes

using different methods in Snake and Pacman. We show the confidence
intervals over 10 different seeds. The plots are smoothed with a 1D
Gaussian filter with σ=3 for improved visualization. 34

4.1 A classification of different frameworks for equivariant predictions. In this
example, the task is to restyle an MNIST digit in a rotation equivariant
way. We propose a class of models that falls in the single-view-plus-
transformation framework. 39

4.2 Two general approaches to canonicalization. In the direct approach, an
equivariant neural network outputs the transformation. In the optimiza-
tion approach, a function of the input is minimized to obtain the canonical
sample. 45

4.3 Inference time comparison of our method with G-CNN with increasing
order of rotations. 50

4.4 Canonicalized images from different canonicalization functions for digit 7
and 1. 52

xiii

5.1 Predicted masks from the Segment Anything Model (SAM) (Kirillov et al.,
2023), showcasing both the original model and our proposed equivariant
adaptation for 90◦ counter-clockwise rotated input images taken from
the COCO 2017 dataset (Lin et al., 2014). Our method makes SAM
equivariant to the group of 90◦ rotations while only requiring 0.3% extra
parameters and modestly increasing the inference time by 7.3%. 61

5.2 Visualization of the diminishing augmentation effect introduced by learn-
ing canonicalization (previous chapter) during training for rotated MNIST
dataset. In this visualization, the leftmost image represents the original
training images. Moving towards the center, we present the canonicalized
images at the beginning of the training process. Finally, the rightmost
image unveils the transformation of the canonized images after training
the model for 100 epochs. 63

5.3 Distribution of angles output from canonicalization function in C8 for
Learned Canonicalization (previous chapter) for CIFAR10 (Krizhevsky
& Hinton, 2009) before and after training. We use indices on the x-axis
instead of angle values to represent the corresponding multiple of 45◦.
Frequency denotes the number of images mapped to a particular multiple
of 45◦. 64

5.4 Training and inference with our proposed regularized canonicalization
method. The canonicalization function outputs a distribution over im-
age transformations and samples from that is used to canonicalize the
input image. Additionally, during training, this predicted distribution is
regularized to match the transformations seen in the dataset. 65

6.1 This figure demonstrates the relationship between two types of equivari-
ance in latent variable modeling for an MDP with a symmetric transition
function. Green arrows (vertical plane) identify a diagram for transition
models in an MDP homomorphism. A model T̄ and state embedding
function hS that are equivariant under an agent’s action makes this dia-
gram commute. Red arrows (horizontal plane) identify the commutativity
diagram for a symmetric transition function of an MDP in the latent
space. Here the state-action embedding ⟨s̃, ã⟩ is produced through the
symmetry transformation of another state-action embedding ⟨s̄, ā⟩. . . . 80

xiv

6.2 An illustration of typical symmetries in a pendulum, and the corre-
sponding transformations of the state and action for a group equivariant
transition model: (a) shows how reflection of the agent’s state results in
a permutation of the action, denoted by a−1. (b) shows how the rotation
of the agent’s state results in invariance of the action in the absence
of gravity. The state transitions can be modeled as group actions (2D
rotations in this example), which our symmetry transformation-based
transition model can capture. Note that rotational symmetry can hold
even when gravity is present. In this case, symmetry transformations
include rotations (and reflections) that preserve the Hamiltonian. Such
non-linear energy-preserving transformations of state-actions in the pixel
space can become linear in the embedding space. 83

6.3 (a) Latent visualization of a sliding ball environment. The ball moves up
or down in one dimension as dictated by the action. We show that our
latent parameterization combined with LAET learns the SO(2) manifold
of the ball’s transition. To obtain the visualization, we start with a 2D
unit vector ([1, 0] here) and transform it using the representation matrix
obtained from the trained encoder by feeding the image observations.
Images of eight uniformly separated positions of the ball are mapped to
the red points, which denote the transformed unit vector. 89

6.4 A schematic of the EqR model, applied to model-free RL. Green in the
framework corresponds to learning equivariance under the agent’s action
and red corresponds to learning equivariance of the transition model with
respect to symmetry transformation of the state-action. This color scheme
is consistent with Figure 2. The part of the framework that corresponds to
reward matching and Q-learning is shown in blue and brown respectively.
The arrows in the schematic are differentiated by their heads and are
described in the legend. 93

6.5 Performance profiles for different methods based on score distributions
(a), and average score distributions (b). Shaded regions show pointwise
95% confidence bands. The higher the curve, the better the method is. . 94

6.6 Plots of Interquartile Mean (IQM) and Optimality Gap (Agarwal et al.,
2021) computed from human-normalized scores, showing the point esti-
mates along with 95% confidence intervals (over 10 runs for all methods, 5
runs for SimPLe). A higher IQM and a lower optimality gap reflect better
performance. (a) shows different methods for all 26 games. (b) shows our
proposed method with different loss components for all 26 games. . . . 95

xv

7.1 E(3)-equivariant embedding for the pendulum. The input x

consists of a pair of images that identify both the angle and the angular
velocity of a pendulum. The equivariant embedding learns to encode both:
the true angle is shown by a change of color and angular velocity using a
change of brightness. The two circular ends (black and white) correspond
to states of maximum angular velocity in opposite directions. The SymReg
objective for the Euclidean group learns this embedding by preserving
the pairwise distance between the codes before (f(x), f(x′)) and after
(f(tX (g, x)), f(tX (g, x))) transformations of the input by tX . Therefore
dashed lines have equal lengths. For the pendulum, the transformations
are in the form of applying positive or negative torque in some range. . 100

7.2 Visualization of SymReg’s latent projection for the rotating
Chair dataset. The chair is rotated in three orthogonal axes from 0

to 2π. The latent embedding for each chair pose is projected from a
16D embedding space to a 2D space for visualization. The colors of the
representations are mapped to the chair’s angle of rotation. We notice
that the mapping function f learned is continuous with respect to the
transformations of the object, and it maps the rotations along an axis to
a circular manifold. This is true for each orthogonal axis of rotation. We
observe a similar result for any other initial pose for the chair. 105

8.1 A comparison of our Koopman-based linear dynamics model with a non-
linear MLP-based dynamics model. The Diagonal Koopman formulation
allows for modeling longer horizons efficiently with control over gradients.
Here BPTT stands for Backpropagation Through Time. 114

8.2 A schematic of the latent Koopman dynamics model. Both actions and
initial state embedding are encoded into a latent space in complex (C)
domain before passing through the Koopman dynamics block. 118

8.3 Forward state and reward prediction error in Offline Reinforcement Learn-
ing environments. We consider five dynamics modeling techniques and
perform this prediction task over a horizon of 100 environment steps.
The results are over 3 runs. Our Koopman-based method is competi-
tive with the best performing GRU baseline while being 2× faster. See
(Mondal et al., 2023) for exact numerical values. 125

8.4 Training speed in iterations/second (↑) for the state prediction task using
different dynamics model on halfcheetah-expert-v2. Each iteration
consists of one gradient update of the entire model using a mini-batch of
256 in A100 GPU. 126

xvi

8.5 Comparison of our Koopman-based dynamics model (with a horizon of 20)
and an MLP-based dynamics model of vanilla TD-MPC (Hansen et al.,
2022). The results are over 5 random seeds for each environment. Higher
Mean & IQM and lower Optimality Gap is better. 128

8.6 Comparison of vanilla SAC (Haarnoja et al., 2018a) and its integration
with an MLP-based (SPR) and a Koopman-based dynamics model for
incorporating self-predictive representations in the DeepMind Control
Suite. The results are over 5 random seeds for each environment. Higher
Mean & IQM and lower Optimality Gap is better. 128

xvii

List of Tables

3.1 This table gives the number of parameters of both the Networks. 33
3.2 Average reward over 200 episodes of Pacman for 5 seeds reported with a

confidence level of 95% for different environment transformations. e is
the original screen. 35

4.1 Comparison with the existing work for Rotated-MNIST. 48
4.2 Ablation study on the effect of augmentation. 49
4.3 Impact of the number of layers in canonicalization function network and

order of the discrete rotations to which it is equivariant on the performance. 50
4.4 Test MSE for the N-body dynamics prediction task. 53
4.5 Test classification accuracy of different point cloud models on the Mod-

elNet40 dataset (Wu et al., 2015) in three train/test scenarios. This
table is borrowed from (Deng et al., 2021). z here stands for aligned
data augmented by random rotations around the vertical axis, and SO(3)

indicates data augmented by random 3D rotations. 55
4.6 ShapeNet part segmentation results. Overall average category mean IoU

over 16 categories in two train/test scenarios are reported. z here stands
for aligned data augmented by random rotations around the vertical axis,
and SO(3) indicates data augmented by random 3D rotations 57

4.7 Inference time (in seconds) of the networks for ModelNet40 classification
test split in 1 A100 and 8 CPUs with a batch size of 32. Vanilla denotes
no modification to the base network, while Vector Neuron and Canonical-
ization denote that the base network is redesigned/enhanced with them
to be equivariant. 57

xviii

5.1 Effect of augmentation on the Prediction network. Top-1 classification
accuracy and G-Averaged classification accuracy for CIFAR10 and CI-
FAR100 (Krizhevsky & Hinton, 2009). C8-Avg Acc refers to the top-1
accuracy on the augmented test set obtained using the group G = C8,
with each element of G applied on the original test set. 65

5.2 Performance comparison of large pretrained models finetuned on different
vision datasets. Both classification accuracy and G-averaged classification
accuracies are reported. Acc refers to the accuracy on the original test
set, and C8-Avg Acc refers to the accuracy on the augmented test set
obtained using the group G = C8. C8-Aug. refers to fine-tuning the
pre-trained model with rotation augmentations restricted to C8. 70

5.3 Zero-shot performance comparison of large pretrained segmentation mod-
els with and without trained canonicalization functions on COCO 2017
dataset (Lin et al., 2014). Along with the number of parameters in canon-
icalization and prediction network, we report mAP and C4-averaged mAP
values. † indicates G-CNN and ‡ indicates a more expressive G-WRN for
canonicalization. 74

5.4 Average reward over 200 episodes of Pacman for 5 seeds reported with a
confidence level of 95% for different environment transformations. e is
the original screen. 74

5.5 Classification accuracy of different pointcloud models on the ModelNet40
dataset (Wu et al., 2015) in different train/test scenarios and ShapeNet
(Chang et al., 2015) Part segmentation mean IoUs over 16 categories
in different train/test scenarios. x/y here stands for training with x

augmentation and testing with y augmentation. z here stands for aligned
data augmented by random rotations around the vertical/z axis and SO(3)

indicates data augmented by random 3D rotations. 75

6.1 Subgroup Properties . 86

7.1 Hits at Rank 1 (H@1) and Mean Reciprocal Rank (MRR) of different
methods. 108

7.2 Average reward collected over 10 episodes for various models in Inverted
Pendulum, Reacher and Swimmer. We provide the standard errors using
5 random seeds. 109

xix

Part I

Introduction and Background

1

1
Introduction

Deep Reinforcement Learning (DRL) stands at the forefront of artificial
intelligence research, providing a powerful framework for agents to learn and
optimize behaviors directly from complex, high-dimensional inputs (Silver
et al., 2016; Mnih et al., 2015b; François-Lavet et al., 2018; Levine et al.,
2016a). This thesis advances the field of DRL by leveraging the intrinsic
symmetries and structures observed in real-world environments to enhance
both the efficiency and generalizability of learning algorithms.

Emergence and Significance of Deep Reinforcement Learning The
fusion of deep learning with traditional reinforcement learning frameworks
has catalyzed substantial advancements across diverse domains. By enabling
direct learning from raw sensory data, Deep Reinforcement Learning (DRL) ad-
dresses complex decision-making problems characterized by high-dimensional
state or observation spaces, previously infeasible with conventional methods
(Schulman et al., 2017c; Haarnoja et al., 2018b).

DRL has achieved superhuman performance in various gaming environ-
ments. Notable achievements include mastering Atari games (Mnih et al.,
2013c), where DRL algorithms surpassed human performance by learning
directly from pixel inputs, and achieving unprecedented success in the game
of Go (Silver et al., 2016), which was considered a grand challenge due to

2

its vast search space and strategic depth. DRL has also demonstrated excep-
tional prowess in complex multiplayer games such as Dota 2 (Berner et al.,
2019), showcasing its ability to handle dynamic and cooperative-competitive
scenarios. In robotics, DRL has enabled the development of agents capable
of performing intricate manipulation tasks (Levine et al., 2016b), thereby
pushing the boundaries of robotic dexterity and adaptability. In the realm of
autonomous navigation, DRL has revolutionized self-driving car algorithms
(Shalev-Shwartz & Shashua, 2016), optimizing decision-making processes for
safe and efficient navigation in real-world environments (Bojarski et al., 2016).

Beyond gaming and robotics, DRL has made significant strides in scientific
discovery and healthcare. For instance, in drug discovery, DRL has been
employed to predict molecular interactions, expediting the identification of
potential therapeutic compounds (Zhavoronkov et al., 2019; Popova et al.,
2018). This application underscores the potential of DRL to accelerate
research and innovation in critical scientific fields.

Challenges in Deep Reinforcement Learning Despite its promise, DRL
faces critical challenges in sample efficiency and generalization that hinder its
practical deployment. The issue of sample inefficiency arises because many
DRL algorithms use reward as the only signal for representation learning in
contexts with high dimensional states and actions which leads to tremendous
data inefficiency. Notably, almost all success stories of RL rely on vast amounts
of simulation data or the number of interactions with the environment to
learn effective policies. This makes them impractical for scenarios where data
collection is expensive or slow (Kaiser et al., 2019a; Agarwal et al., 2020).
Moreover, these algorithms struggle to generalize to new environments or even
slight transformations of the observation space, limiting their applicability
in dynamic real-world settings (Henderson et al., 2018; Cobbe et al., 2019).
This generalization problem is compounded by overfitting to specific tasks or
configurations encountered during training, thereby failing to perform well in
unseen scenarios (Justesen & Risi, 2018; Zhang et al., 2020a). Furthermore,
the dependency on large amounts of data and computational resources for
training not only escalates costs but also restricts the scalability of DRL
solutions (Dulac-Arnold et al., 2019; Liang et al., 2018). Addressing these
issues requires innovations in algorithm design to enhance learning efficiency
and robustness using stronger inductive biases(Bengio et al., 2013a), enabling
broader deployment of DRL in diverse applications.

3

Leveraging Structure and Symmetries This research posits that a deep
understanding of the symmetries in the DRL agent’s observation data and
actions can effectively address these challenges. Symmetry, in a mathematical
sense, implies that certain transformations of the environment—such as
rotations, reflections, and translations—do not alter the underlying realities
of the environment. By encoding these symmetrical properties into DRL
algorithms as prior knowledge, one can significantly improve sample efficiency
and enable robust generalization across varying environmental configurations.

Building on the concept of equivariance, which dictates that transforma-
tions of the input should predictably alter the output, this thesis develops
DRL algorithms that inherently recognize and utilize these transformations.
This improves sample efficiency because observing a specific trajectory or
triplet (s, a, s′) effectively provides the agent with the information of all its
transformations. Such an approach not only enhances learning efficiency by
reducing the need for relearning under new transformations but also mirrors
human cognitive abilities to generalize from known situations to new ones.
For instance, a driver accustomed to left-hand traffic can adapt to right-hand
traffic with relative ease, a conceptually analogous behavior that DRL systems
can emulate to adjust to new environments quickly.

Research Objectives The primary aim of this research is to harness the
power of equivariance and transformation-aware learning to make DRL models
both data-efficient and generalizable across the transformation of the data.
The objectives are as follows:

• To identify and formalize the relevant transformations and symmetries
in the context of the DRL agent’s observations and actions.

• To design novel efficient neural networks that inherently account for
these transformations, thereby maintaining consistent outputs across
varied observations of the same phenomena.

• To develop novel loss functions and training methodologies that leverage
the structure and symmetry in the data, moving beyond equivariant
neural networks to enhance learning.

• To empirically validate the effectiveness of these models across diverse
application domains including DRL, demonstrating their enhanced
generalization capabilities and efficiency.

4

1.1 Thesis Outline
The thesis is organized into four main parts. Part I starts with an introduction
and then provides background that is relevant to the rest of the thesis, while
Parts II and III each address specific aspects of utilizing structure and
symmetries in DRL. Part IV concludes the thesis.

Part I: Introduction and Background This part delves into the es-
sential background, covering Machine and Deep learning, Groups and their
representation theory, Markov Decision Processes (MDPs), DRL and Koop-
man Theory. It introduces the concept of equivariance in deep learning and
symmetry in MDPs, which forms the cornerstone of the subsequent chapters.

Part II: Leveraging Known Symmetry Transformations This part
starts with equivariant representation learning in DRL by modifying neural
network architectures where the symmetry group is known. Subsequent
chapters go beyond Reinforcement Learning and provide a more scalable
general technique to build architecture-agnostic equivariance in different data
domains and tasks. In this part, we assume that the both the symmetry
group and its action on the input space are known.

• Chapter 3: Introduces Group Equivariant Deep Reinforcement Learn-
ing, discussing related work and foundational concepts like E(2)-equivariant
convolution (Weiler & Cesa, 2019c). It presents the design and imple-
mentation of equivariant deep Q-networks and vectorized policies.

• Chapter 4: Focuses on the design of a novel method to achieve equiv-
ariance through canonicalization. It details the design of canonicaliza-
tion functions for Euclidean groups and demonstrates their application
through various experiments, including image classification, N-body
dynamics prediction, point cloud classification, and segmentation.

• Chapter 5: Extends the idea to adapt large pretrained models to
be equivariant with minimal modifications. It explores the problems
with canonicalization while adapting it to pre-trained architectures,
presenting experimental results on image and point cloud domains, and
demonstrating the performance improvements and robustness of the
proposed methods. An extension of this idea is also proposed to make a
pretrained agent robust to transformations of the observations/ states.

5

Part III: Learning Structured Representations This part focuses on
learning equivariant representations from data without architectural con-
straints using novel loss functions, fitting the general theme of self-supervised
representation learning while maintaining a structured representation space.
In this part we do not assume that the symmetry group or its action in the
input space are known. We end this part by introducing a technique to learn
linear latent structure using Koopman’s Theory for long range dynamics
modeling in RL and planning.

• Chapter 6: Proposes novel methods for learning structured represen-
tations in DRL. It introduces the concept of equivariant representations
using loss constraints on Lie groups, focusing on parameterizing latent
embeddings to maintain equivariance under continuous transformations.
The application of these techniques to Atari games showcases improved
performance and sample efficiency.

• Chapter 7: Provides an alternate approach, proposing symmetry
regularization objectives to enhance the learning of equivariant repre-
sentations using group invariants. This approach leverages invariants of
transformation groups to enforce consistent and structured embeddings,
critical for effective policy learning.

• Chapter 8: Extends the ideas of structured representation learning by
modeling the dynamics as an action of a linear operator using Koopman
Theory. Unlike previous chapters, it motivates representation learning in
interactive environments from a control theory perspective. It discusses
the use of Koopman operators for efficient long-range dynamics modeling,
demonstrating the integration of these techniques into model-based
planning and RL frameworks. Empirical results highlight the advantages
of Koopman-based models in terms of stability and computational
efficiency, particularly for long-horizon predictions.

Part IV: Conclusion This part concludes the thesis, summarizing the
key findings and contributions, discussing their implications, and outlining
potential future research directions.

6

1.2 Preview of Main Results and Insights
This section provides a concise overview of the significant findings and insights
gained from the research in this thesis. These insights are based on the
comprehensive analysis and experiments detailed in the subsequent chapters.

1. Equivariant Q-Networks and Policy Networks leads to data-
efficiency and generalization (Chapters 3 and 4): A significant
advancement in this research is the motivation and implementation
of equivariant Q-networks and policy networks. These networks lever-
age the structural and symmetrical properties of the environment to
dramatically improve both data efficiency and the ability to generalize
across different environments. By incorporating these properties into
the network design, the solution space of the Markov Decision Process
(MDP) is effectively constrained, leading to a minimized MDP defined
by its symmetry. This approach marks a major step forward in reducing
the number of environment simulations required to learn a policy, thus
making deep reinforcement learning more practical and applicable..

2. Canonicalization facilitates scaling of Equivariant Deep Neural
Network in an efficient way (Chapters 4 and 5): The development
of the canonicalization technique, as detailed in Chapters 4 and 5, en-
hances the efficiency of equivariant models and ensures their robustness
against various transformations. This improvement is achieved by using
a more expressive, non-equivariant architecture that is optimized for
canonical data orientations. Such a strategy notably reduces the compu-
tational demands typically associated with layer-wise equivariance, yet
it preserves robustness and ensures high generalization across diverse
tasks in both image and point cloud domains. The effectiveness of this
technique has been empirically confirmed through rigorous testing in a
range of applications, including classification, segmentation, dynamics
modeling, and decision-making. Furthermore, we provide theoretical
insights to demonstrate the universality of this technique and its ability
to relax the strict architectural constraints traditionally required for
equivariance. This technique can be adapted to and integrated with
any large, pretrained architecture that is now increasingly common in
the field, and this yieelds promising results across various data domains
and tasks.

7

3. Improved sample efficiency with equivariant representation
learning methods (Chapters 6 and 7): In Chapters 6 and 7, we
introduce novel self-supervised objectives for learning equivariant repre-
sentations in both Euclidean and non-Euclidean spaces. Our research
demonstrates that mere equivariance is not adequate; the symmetry
group’s actions must be linear in the latent space to enhance perfor-
mance and generalization. Our results indicate that the inductive bias
introduced by these structured equivariant representations through
linear actions substantially improves the sample efficiency of deep re-
inforcement learning (DRL) agents. This innovative approach creates
a latent representation space that more accurately mirrors the struc-
ture of the data compared to existing contrastive and non-contrastive
self-supervised representation learning techniques.

4. Application of Koopman Theory results in efficient dynam-
ics modeling of complex environments (Chapter 8): Koopman
theory offers a theoretical foundation for modeling state transitions in
interactive environments as an action of a Linear Koopman Operator
in the latent representation space. The use of these linear dynamics
models facilitates efficient long-range dynamics modeling. Additionally,
integrating these models with deep reinforcement learning and plan-
ning algorithms that utilize dynamic modeling — discussed in detail in
Chapter 8 — enhances their speed, training stability, sample efficiency,
and overall performance.

8

2
Background

This chapter lays the foundation for understanding the concepts explored in
subsequent chapters of this thesis. We begin in Section 2.1 with a concise
overview of machine learning and deep learning. While not exhaustive, this
section serves as a starting point for newcomers to the field. Next, Section 2.2
introduces the fundamental principles of groups and their representation
theory. This knowledge is then applied to the realm of deep learning in
Section 2.3, providing crucial insights for all chapters except Chapter 8. In
Section 2.4, we discuss Markov Decision Processes, their homomorphisms, and
how these concepts relate to the notion of symmetry or groups. This section,
along with Section 2.5, forms the theoretical backbone for Chapters 3, 5, 6,
7, and 8. Lastly, Section 8.1.1 offers an introduction to Koopman’s Theory
for dynamical systems. While this section is primarily relevant to Chapter
8, readers may find it enriching for a broader understanding of dynamical
systems and their modeling. By progressing through the sections in the
present Chapter, readers will gain the necessary background and theoretical
grounding to navigate the advanced concepts presented in the remainder
of this thesis. We also provide additional background when necessary in
subsequent chapters.

9

2.1 Machine Learning and Deep Learning
Machine Learning Machine learning (ML) is a branch of artificial intelli-
gence focused on building systems that learn from data, identify patterns, and
make decisions with minimal human intervention (Mitchell, 1997). In general,
machine learning algorithms are divided into three main categories: supervised
learning, unsupervised learning, and reinforcement learning (Bishop, 2006).
Supervised learning algorithms are trained using labeled data, where the
correct output is provided for each input sample, allowing the model to learn
a mapping from inputs to outputs (Vapnik, 1998). At their core, supervised
learning algorithms aim to approximate a function that maps input features
to output labels, utilizing labeled datasets for training (Hastie et al., 2009).
This approximation problem is typically posed as an optimization problem
where the goal is to find the best parameters that minimize the difference
between the predicted and true outputs across the dataset (Friedman et al.,
2001). Unsupervised learning explores patterns in unlabeled data. Recently,
this field has evolved into self-supervised learning, where the data itself serves
as supervision through innovative loss functions (Liu et al., 2021b). This
approach eliminates the need for manual labeling and effectively utilizes large,
unannotated datasets to enhance learning outcomes. Finally, Reinforcement
learning involves agents that learn to make decisions by performing actions
in an environment to maximize some notion of cumulative reward (Sutton &
Barto, 2018).

Deep Learning Deep learning, a subset of machine learning, utilizes neural
networks that are inspired by the structure and function of the human brain.
These networks are parametric models composed of layers of interconnected
nodes, each representing a non-linear transformation of its inputs. The training
of deep neural networks involves adjusting the weights of the connections
between neurons or "parameters of the neural network" on the basis of the
error in the output compared to the expected result. This process, known
as backpropagation, uses gradient descent to minimize some form of the loss
function that measures the discrepancy between the actual output of the
network and the desired output (Rumelhart et al., 1986). The ability of
deep networks to learn effective representations of data without the need for
manual feature extraction is one of the key reasons for their success in various
domains.

The scope of deep learning applications has expanded dramatically with

10

the advent of generative AI models, revolutionizing areas such as content
creation, personalized medicine, and autonomous systems. Diffusion and
transformer-based models are at the forefront, driving innovations in image
generation, natural language processing, and beyond (Goodfellow et al., 2014;
Brown et al., 2020b; Vaswani et al., 2017a). For instance, deep learning now
enables the synthesis of realistic images and videos, complex natural language
and code understanding and generation, and the creation of dynamic virtual
environments. In the medical field, deep learning models facilitate drug
discovery and personalized treatment plans by analyzing vast datasets that
were previously intractable (Senior et al., 2020). Furthermore, reinforcement
learning, a subset of deep learning, has made significant strides in training
autonomous vehicles and sophisticated robotics, where agents learn optimal
behaviors in complex, unpredictable environments (Vinyals et al., 2019; Silver
et al., 2017b).

In practical applications, deep learning models are designed to exploit
the inherent structures in data. For instance, convolutional neural networks
(CNNs) leverage the spatial hierarchies in image data (Krizhevsky et al.,
2012), while recurrent neural networks (RNNs) exploit the temporal dynamics
in sequential data (Sutskever et al., 2014). These specialized architectures
not only improve learning efficiency and model performance but also extend
the types of functions that can be effectively approximated.

Next, we review groups and their representation theory before we discuss
how they are used to improve robustness and sample efficiency in deep
learning.

2.2 Groups and their representation theory
Groups A group is a fundamental mathematical concept that captures the
notion of symmetry. Groups play a crucial role in many areas of mathematics
and physics, and have applications in computer science, cryptography, and
machine learning. Formally, a group G = {g} is a set equipped with an
associative binary operation, such that the set is closed under this operation,
and each element g ∈ G has a unique inverse, such that their composition
gives the identity g−1g = e. A group helps us define a set of invertible
transformations that has some structure.

Subgroups Any subset G ′ ≤ G that is closed under the binary operation of
the groups forms a subgroup. A subgroup N ≤ G is called a normal subgroup
if it is invariant under conjugation by elements of G, that is, gN g−1 = N for

11

all g ∈ G. We denote this as N ⊴ G. A normal subgroup N of a group G can
be used to decompose G into a semidirect product N ⋊H, where H acts on
N by conjugation: for h ∈ H1 and n ∈ N , we have hnh−1 ∈ N .

Group Action A group G can act on a set X by transforming its elements
x ∈ X through a bijection. We use αX : G × X 7→ X to denote the group
action, and for brevity we interchangeably use αX (g, x) and g · x to denote
it. The action αX is faithful to G if transformations of X using each g ∈ G
are unique – i.e., ∀g, g′ ∃x ∈ X s.t. αX (g, x) ̸= αX (g

′, x). The action captures
some of the structure of G due to two constraints – the identity element acts
trivially e · x = x; and the composition of actions is equal to the action of
the composition, i.e., (gg′) · x = g · (g′ · x),∀g, g′ ∈ G. X is then called a
G-set. For example, if G = SO(2) is the group of 2D rotations, its action
αx on any image x ∈ X could rotate it around some center, or it could
perform a horizontal translation with a circular boundary. The amount of
rotation or translation is identified by choice of g ∈ G, while the choice of
transformation itself (rotation vs. translation) is defined by the action αx.
Here, the underlying abstract group SO(2) dictates the composition rule for
the transformations.

Cosets Let H be a subgroup of G. The left (right) coset of H in G is the
set gH = {gh | h ∈ H} (Hg = {hg | h ∈ H}) for g ∈ G. We denote the set of
the left (right) cosets of H in G as G/H (H\G).
Orbits and Stabilizers Any G-action partitions X into orbits xG = {g ·x |
g ∈ G}, and we denote the set of orbits under G-action as X/G. A G-action
is transitive if and only if its action results in a single orbit. The stabilizer of
an element x ∈ X under the action of G is the subgroup of G that leaves x
fixed, that is, StabG(x) = {g ∈ G | g · x = x}. The stabilizer is also known as
the isotropy subgroup or the fixer of x.

Group Representation Representation theory studies how groups act on
vector spaces, and their elements can be represented as linear transformations
in these spaces. A representation of a group G is a homomorphism from G to
the group of invertible linear transformations on a vector space V. We use
ρ(G) to denote it, and ρ(g) : V → V is the representation of g ∈ G. For any
two group elements g1 and g2, the corresponding linear transformations ρ(g1)
and ρ(g2) on V satisfy ρ(g1g2) = ρ(g1)ρ(g2), and the identity element e of G

1The symbol h which is used to denote a group element, is later repurposed in the text
to represent a function. However, the context of the chapter will help differentiate it.

12

corresponds to the identity transformation on V .

Trivial and Regular Representations Two fundamental types of rep-
resentations are the trivial representation and the regular representation.
The trivial representation maps every element of the group to the identity
transformation on a one-dimensional vector space. Formally, for a group G,
the trivial representation ρtriv is defined as ρtriv(g) = 1 for all g ∈ G. On the
other hand, the regular representation is a higher-dimensional representation
that captures the full structure of the group. For a finite group G, the regular
representation acts on a vector space with a dimension equal to the order
of the group, where each basis vector corresponds to a group element. The
action of the group in this space is defined by left multiplication: for g, h ∈ G,
ρreg(g)eh = egh, where eh is the basis vector corresponding to h.

Irreducible Representation An irreducible representation of a group
G is a representation that cannot be decomposed into two nontrivial sub-
representations, where a sub-representation is a subspace of the original vector
space that is invariant under the action of G. In other words, an irreducible
representation captures the most fundamental structure of a group’s action on
a vector space and cannot be further simplified. For example, the irreducible
representations of SO(2) can be described using circular harmonics, which are
complex-valued functions that are eigenfunctions of the angular momentum
operator. They are labeled by an integer m, and associated with functions
Ym(θ), where θ is the angle of rotation. These functions, called circular
harmonics, can be expressed as complex exponentials of the form eimθ.

Induced Representation Induced representations serve as a pivotal method
in representation theory to extend a representation from a subgroup to the
entire group. Consider a subgroup H, which is a subset of a larger group G.
Let ρH be a representation of H on a vector space VH . The process of inducing
this representation to G results in a new representation, ρG = IndGHρH , defined
on an expanded vector space VG.

To construct VG, we consider functions from G to VH . These functions are
chosen so that they transform covariantly under the action of H. Specifically,
for a function f , the requirement is that f(gh) = ρH(h

−1)f(g) for any h in H
and g in G. Here, G acts on these functions through left translation, meaning
(ρG(g)f) (x) = f(g−1x). This action effectively broadens the influence of ρH
from H to the whole group G, illustrating how local symmetries of a subgroup
can extend to global actions within the larger group.

13

In the case of the G = E(2) group, which represents the Euclidean
isometries of the 2D plane (including translations, rotations, and reflections),
we can explore an example where H ≤ O(2), a subgroup involving rotations.
Assume ρH is a representation of H that acts on a vector space VH by rotating
vectors.

To induce this representation to E(2), represented as T (2)⋊O(2) (where
T (2) is the translation group and O(2) includes rotations and reflections),
we expand to VG. Here, VG consists of functions mapping from the plane R2

(accounting for all translations in T (2)) to VH . The required covariance under
the subgroup’s action transforms into the condition: for any translation t and
rotation g, the function f satisfies (ρG(tg)f) (x) = ρH(g) · f(g−1(x− t)).

This construction elegantly expands the vector space to encompass not
only the transformations of H but also the translations, effectively elevating
the subgroup’s local symmetry to a comprehensive global action across the
entire Euclidean group. The power of induced representations becomes evident
in their practical applications to machine learning, such as in building E(2)-
Steerable Convolutional Neural Networks (Weiler & Cesa, 2019c). These
advanced architectures leverage group symmetries to handle transformations
under the E(2) group, significantly enhancing robustness and generalization
in tasks like image understanding. We discuss this more in the next Chapter.

Parameterizing Lie Groups If we assume G is any sub-group of a classical
Lie group over R, then it can be represented using invertible matrices. We use
ρ(G) to denote a linear representation of G, and ρg : RD → RD for the action
(a.k.a. the representation) of g ∈ G. Many such Lie groups are identifiable
by their infinitesimal generators, their Lie algebra g = Lie(ρ(G)).2 This
connection enables a simple parameterization of ρ(G) using a set of linear bases
{E(i)}i for their Lie algebra – that is ρg = exp

(∑
i βg,iE

(i)
)
, where exp(Y) =∑∞

j=0
Yj

j!
is the matrix exponential. We refer to this parameterization later in

Section 6.1 of Chapter 6. Such linear representations in the form of invertible
matrices can be used for both continuous transformations (e.g., 3D rotations)
and finite groups (e.g., ×90◦ rotations).

2.3 Equivariance in Deep Learning
In the context of machine learning, we are interested in designing models that
are invariant or equivariant to the input data’s symmetries. This is where

2This relation is bijective for “simply connected” Lie groups.

14

group representations and equivariant functions come into play. Suppose we
have a set of input data X with some symmetry structure that we would like
to preserve in our machine learning model. We assume that this symmetry
structure can be described by a group G, which acts on X through a group
representation ρ : G → T , where T ⊂ GL(X) is the set of invertible linear
transformations on X . The group representation ρ assigns to each element g
of G a transformation ρ(g) ∈ T that acts on X .

An equivariant function f : X → Y is a function that commutes with the
group action of G on X and Y , i.e., for all g ∈ G and x ∈ X , we have:

f(ρ(g) · x) = ρ′(g) · f(x) (2.1)

where ρ′ : G → T ′ is another group representation that acts on the output
space Y . If ρ′ is the trivial representation, i.e., ρ′(g) = I or identity transfor-
mation for all g ∈ G, then we say that f is invariant to the group action of
G.

In other words, an equivariant function is a function whose output changes
in a predictable way under transformations of the input induced by the group
G. In context of the data, the orbit xG of x under the action of G is the set
of all possible transformations of x under the group action of G. The set of
all orbits in X is denoted by X/G and forms a partition of X . The goal of
equivariant neural networks is to exploit this structure by sharing weights
across the orbits to reduce the number of parameters needed to learn the
function f . By doing so, one can leverage the symmetry present in the data
to improve the generalization performance of the model.

One common example of an equivariant network is the convolutional
neural network (CNN), which is designed to be equivariant to translation,
meaning that if the input image is translated, the output of the convolution
operation will also be translated predictably. The idea of equivariance can be
generalized to any symmetry transformation group, but it requires careful
design of the different layers of the neural network architecture to ensure that
the equivariance property is preserved. In addition to the translation equiv-
ariance provided by traditional CNNs, recent advancements have extended
equivariance in CNNs to more complex transformations including rotations,
scale changes, and other symmetries (Cohen & Welling, 2016b, 2017; Cohen
et al., 2018, 2019a; Worrall et al., 2017a; Weiler & Cesa, 2019b; Weiler et al.,
2018).

15

Similarly, permutation equivariance has been incorporated into various
architectures, including Deep Sets (Zaheer et al., 2017b; Lee et al., 2019)
for handling unordered data collections, Graph Neural Networks (Battaglia
et al., 2018; Kipf & Welling, 2017; Gilmer et al., 2017b) for processing node-
permutation invariant graph structures, and Transformers (Vaswani et al.,
2017b; Devlin et al., 2018; Brown et al., 2020a) through their self-attention
mechanism. Recent work has further explored permutation-equivariant ar-
chitectures in point cloud processing (Qi et al., 2017a; Wang et al., 2019b),
set-to-set learning (Vinyals et al., 2015; You et al., 2018), and multi-agent
systems (Sukhbaatar et al., 2016; Jiang et al., 2018).

Furthermore, equivariant models have been applied to other domains such
as physics-based simulations (Satorras et al., 2021) and molecular property
prediction (Anderson et al., 2019; Thomas et al., 2018). These models leverage
symmetries inherent in physical systems to improve generalization and sample
efficiency, demonstrating the broad applicability of equivariance principles
across various scientific and engineering fields.

2.4 Markov Decision Processes
A Markov Decision Process (MDP) is a mathematical framework used for
modeling decision making in situations where outcomes are partly random and
partly under the control of a decision maker. MDPs are useful for studying
optimization problems solved via dynamic programming and reinforcement
learning. We define an MDP by the 5-tupleM = ⟨S,A, R, T, γ⟩, where:
S is the set of all possible states in the environment.
A represents the set of all actions that the decision maker can choose

from.
R : S×A → R is the reward function, which assigns a real number to each

state-action pair, indicating the immediate payoff received after performing
an action in a particular state.

T : S ×A× S → R≥0 is the state transition function, which provides the
probability distribution over possible next states, given the current state and
action. This function satisfies the condition

∑
s′∈S T (s, a, s

′) = 1 for all s ∈ S
and a ∈ A, ensuring that the probabilities are properly normalized.

γ ∈ [0, 1] is the discount factor and is included in MDP formulations to
account for the preference for immediate rewards over future rewards. The
discount factor is a number between 0 and 1 and is used to reduce the value of
rewards received in the future, reflecting their decreased utility as compared

16

to immediate rewards. A lower discount factor results in myopic planning.

2.4.1 Reinforcement Learning
The RL setting can be formalized as a Markov Decision Process (MDP), where
an agent learns to make decisions by interacting with an environment. The
agent’s goal is to maximize a cumulative reward signal. The agent’s policy
π : S ×A → R≥0, denoted by π(a|s), defines the probability distribution over
actions at a given state. The agent’s objective is to learn a policy π(a|s) that
maximizes the expected cumulative reward, also known as the return:

J(π) = Eπ

[
∞∑
t=0

γtR(st, at)

]
(2.2)

where st and at are the state and action at time step t, respectively.
The agent’s expected cumulative reward can also be represented by the

value function, which is defined as the expected cumulative reward starting
from a given state and following a given policy. The value function at state s
under policy π is denoted by V π(s) and can be computed using the Bellman
Equation given by:

V π(s) = Ea∼π(a|s)

[
R(s, a) + γ

∑
s′

T (s′|s, a)V π(s′)

]
(2.3)

Similarly, the action-value function after taking action a at state s and then
following policy π is denoted by Qπ(s, a), and can be computed using the
Bellman Equation given by:

Qπ(s, a) = R(s, a) + Ea′∼π(a|s)

[
γ
∑
s′

T (s′|s, a)Qπ(s′, a′)

]
(2.4)

The optimal policy is given by the actions that maximize the optimal action-
value function Q∗(s, a) at every state and is denoted as π∗(a|s).

2.4.2 MDP Homomorphism
In this section, we ignore the discount factor for brevity by assuming it
to be 1. For two MDPs M = ⟨S,A, R, T ⟩ and M̄ = ⟨S̄, Ā, R̄, T̄ ⟩, an
MDP homomorphism can be defined as a tuple H = ⟨hS , hA⟩ where hS :
S → S̄ is the state mapping and hA : S × A → Ā is the state dependent
action mapping. These two mappings satisfy the following invariance and
equivariance conditions:

17

(1) Invariance of the reward:

R̄(hS(s), hA(s, a)) = R(s, a), ∀s, a ∈ S ×A (2.5)

(2) Equivariance of the deterministic transition model under the agent’s
action:

T̄ (hS(s), hA(s, a)) = hS(T (s, a)), ∀s, a ∈ S ×A (2.6)

A probabilistic variation of the above equation for a stochastic MDP
(Bloem-Reddy & Teh, 2020) is:

T̄ (hS(s
′) | hS(s), hA(s, a)) =

∑
s′′∈[s′]h

T (s′′ | s, a) (2.7)

for all s, s′ ∈ S, a ∈ A, where [s′]hS = hS
−1(hS(s

′)) is the equivalence
class of s′ under hS .

In related literature, MDP homomorphism is often used for minimization
of the MDP, because the optimal policy of M̄ can be lifted to obtain the
optimal counterparts forM. Moreover, the optimal action-value function of
a state action pair inM is equal to the optimal action-value function of the
mapped state-action pair in M̄, that is:

Theorem 2.4.1. (Ravindran & Barto, 2001) Let H = ⟨hS , hA⟩ be an
MDP homomorphism from M to M̄. Then for any (s, a) ∈ S ×A, we have:

Q∗(s, a) = Q̄∗(hS(s), hA(s, a)).

Lifted Policy Given a policy on the image MDP, we can define a lifted
policy on the original MDP that has similar behaviour. Let H = ⟨hS , hA⟩
be an MDP homomorphism from M to M̄, and let π̄ : S̄ × Ā → R≥0 be a
policy on M̄. Then π̄ lifted toM is a policy π↑ : S ×A → R≥0 such that for
any (s, a) ∈ S ×A, we have:

π↑(a|s) = π̄(hA(s, a)|hS(s))
|{h−1

A (s)(hA(s, a))}|

For these results to hold, it is sufficient for the lifted policy to satisfy:∑
a∈{h−1

A (s)(hA(s,a))}

π↑(a|s) = π̄(hA(s, a)|hS(s)) ∀s ∈ S (3)

18

and in order to make the lifted policy unique, Ravindran and Barto (2001)
choose to uniformly spread the probability of taking hA(s, a) from hS(s) across
all actions a′ satisfying hA(s, a) = hA(s, a

′). Then, we have the lifted policy
of the optimal policy ofM is an optimal policy for M̄:

Theorem 2.4.2. (Ravindran & Barto, 2001) Let H = ⟨hS , hA⟩ be an
MDP homomorphism from M to M̄, and let π̄∗ : S̄ × Ā → R≥0 be an
optimal policy on M. Then for the original MDP M, the lifted policy
π↑ : S ×A → R≥0 is an optimal policy - π∗.

2.4.3 Symmetric MDPs
The automorphism group GM = Aut(M) of an MDP identifies the set of
symmetry transformations of state-actions that preserve the reward and the
transition dynamics:

R(s, a) = R(g · ⟨s, a⟩)), ∀g ∈ GM, s ∈ S, a ∈ A (2.8)
T (s′ | s, a) = T (g · s′ | g · ⟨s, a⟩) and
g · T (s, a) = T (g · ⟨s, a⟩), ∀g ∈ GM, s, s′ ∈ S, a ∈ A (2.9)

We refer to a reward function R that satisfies Eq. (2.8) as a GM-invariant re-
ward function and a deterministic transition function T that satisfies Eq. (2.9)
as a GM-equivariant transition function. Note that this is a distinct notion
from invariance and equivariance under the agent’s action in the context of
MDP homomorphism. Here, the action refers to the action of a symmetry
group, while in MDP homomorphism, the equivariance is to the action of the
agent. We use group action or G-action to make this distinction clear when
necessary.

The connection of symmetric MDPs to MDP homomorphism is due to the
fact that symmetries can be used to define a homomorphism H :M 7→ M̄
by collapsing the state-actions that form an orbit under GM that is:

(hS(s), hA(s, a)) = (hS(g.s), hA(g · ⟨s, a⟩) ∀g ∈ GM s, a ∈ S ×A (2.10)

Formally, the collapsed MDP M̄ = ⟨S̄, Ā, R̄, T̄ ⟩ is defined by S̄ =
S/GM, Ā = A/GM, R̄(⟨s, a⟩GM) = R(s, a) and T̄ (s′GM | ⟨s, a⟩GM) = T (s′ |
s, a). This results in a symmetry-based model minimization of symmetric
MDPs where the optimal action-value function and the lifted policy are
invariant along the orbit of the group GM.

19

Theorem 2.4.3. (Ravindran & Barto, 2001) For a symmetric MDP
that satisfies both Eq. (2.8) and Eq. (2.9), both the optimal action-value and
optimal policy functions become invariant under GM action – that is,

Q∗(s, a) = Q∗(g · ⟨s, a⟩) and
π∗(a, s) = π∗(g · ⟨a, s⟩), ∀g ∈ GM s, a ∈ S ×A. (2.11)

The above result is easy to derive using the application of Eq. (2.10) in
Theorem 2.4.1 and Theorem 2.4.2 and also implies V ∗(s) = V ∗(g · s). In
the following section, we provide a brief overview of Deep Reinforcement
Learning. The subsequent chapters will then demonstrate how the concepts
introduced in this section can be applied to enhance the sample efficiency
and generalization capabilities of Deep RL agents.

2.5 Deep Reinforcement Learning
Deep reinforcement learning (DRL) integrates Deep Neural Networks (DNNs)
with reinforcement learning (RL) algorithms to enable learning directly from
raw sensory inputs, such as images or audio or other signals. This integration
facilitates the solution of complex decision-making problems where traditional
RL techniques might struggle. DRL algorithms typically use DNNs to repre-
sent either the value function, the policy, or both. Moreover, an alternative
approach involves using DNNs to construct a model of the environment. Al-
though this model-based strategy can generate synthetic experiences for policy
or value function training, our focus in this thesis will remain on improving
model-free DRL approaches from a representation learning perspective.

Value-based RL algorithms function in two main phases: policy evaluation
and policy improvement. For instance, Q-learning, a prominent method in
this category, estimates the optimal action-value function, denoted by Q∗(s, a).
This function represents the maximum expected cumulative reward obtainable
from taking action a in state s, and the policy is improved by setting it to
argmaxaQ

∗(s, a) that is choosing actions that maximize Q∗(s, a) (Watkins
& Dayan, 1992; Mnih et al., 2013b, 2015a).

On the other hand, policy-based RL algorithms optimize the policy directly
to maximize the expected return. Policy gradient methods update the policy
by adjusting the policy function’s parameters, typically by estimating the
gradient of the expected return, denoted as J (Sutton et al., 2000; Schulman
et al., 2015).

20

Combining the strengths of both value-based and policy-based approaches,
Actor-critic methods employ two networks: the Q-network (critic), which
learns the action value under the current policy, and the policy network
(actor), which seeks to maximize the expected return by following the critic’s
guidance (Konda & Tsitsiklis, 2000; Haarnoja et al., 2018a; Lillicrap et al.,
2016; Schulman et al., 2017a). This approach allows for more stable and
efficient learning, particularly in environments with high-dimensional action
spaces.

21

Part II

Leveraging Known Symmetry
Transformations

22

3
Group Equivariant Deep
Reinforcement Learning

Reinforcement Learning has always faced challenges when handling high-
dimensional sensory input, such as that given by vision or speech. To this
end, it was demonstrated that a convolutional neural network could directly
learn control policies from raw video data, with success in various Atari
game environments (Mnih et al., 2013a). More recently, there has been work
to improve both the feature extraction from raw images (Grattarola, 2017)
as well as the underlying Deep Q-Learning algorithm (Schaul et al., 2015;
Horgan et al., 2018; Van Hasselt et al., 2016; Wang et al., 2015). Despite these
advances, the generalization of trained agents to new environments and the
improvement of sample efficiency have not been widely explored, especially
in the context of transformations of the environment or the agent.

In this chapter, which is based on (Mondal et al., 2020), we show how
to exploit the intrinsic properties of an environment, such as its symmetry,
to improve the generalization and data efficiency of Deep RL algorithms.
In particular, we show that symmetric environments with discrete actions
having an equivariant policy can lead to model minimization. We achieve
this using an E(2)-Equivariant CNN (Weiler & Cesa, 2019b) architecture

23

as a function approximator for training RL agents using an Equivariant Q-
Learning algorithm. We show that in a game environment, with a high degree
of symmetry, such an approach provides a significant performance gain and
improves sample efficiency as it learns from fewer experience samples.

We further show that the inherent inductive bias of our proposed approach
enables the effective use of knowledge gained across previously unseen trans-
formations of the environment. Our proposed method is complementary to
the other generalization ideas in RL and hence can be used in conjunction
with them. Using the proposed method improves generalization and facilitates
a higher degree of parameter sharing.

3.1 Related Work
Group equivariant CNNs (G-CNN) (Cohen & Welling, 2016b) exploit the
group of symmetries of input images to reduce sample complexity, learn
faster and improve the capacity of CNNs without increasing the number of
parameters. This network architecture uses a new convolution layer whose
output feature map changes equivariantly with the group action on the input
feature map and promotes higher degrees of weight sharing. The theory of
steerable CNNs (Cohen & Welling, 2017; Weiler & Cesa, 2019b; Weiler et al.,
2018) generalizes this idea to continuous groups and homogeneous spaces. In
this work, we focus on using an E(2)-Equivariant Steerable CNN (Weiler &
Cesa, 2019b) architecture for deep RL.

Given an input signal, CNNs extract a hierarchy of feature maps. The
weight-sharing of the convolution layers makes them inherently translation-
equivariant so that a translated input signal results in a corresponding trans-
lation of the feature maps (Cohen & Welling, 2016b). An E(2)-Equivariant
Steerable CNN carries out translation, rotation and reflection equivariant
convolution on the image plane. The feature spaces of such Equivariant
CNNs are defined as spaces of feature fields and are characterized by a
group representation that determines their transformation behaviour under
transformations of the input, as discussed in Section 3.2.1.

The Deep Q-learning Network (DQN) (Mnih et al., 2013a) has been
widely used in RL since its inception. The DQN utilizes “experience replay"
(Lin, 1993) where the agent’s experiences at each time-step are stored in a
memory buffer, and the Q-learning updates are done on samples drawn from
this buffer, which breaks the correlation between them. A variant of this
strategy is the “prioritized replay buffer" (Schaul et al., 2015), where the

24

experiences are sampled according to their importance. The importance of
an experience is typically defined based on its temporal-difference error, with
experiences having higher errors being sampled more frequently as they are
considered more informative for learning. A second variant, the Double DQN
or DDQN (Van Hasselt et al., 2016), addresses the problem of maximization
bias, which occurs due to the usage of the same Q network for the off-policy
bootstrapped target. It uses two Q-networks and takes the min of their
prediction to calculate the bootstrap target to update both of them. An
additional improvement, proposed in a Dueling Network (Wang et al., 2015),
is the use of an advantage function and the learning of a value function to
estimate a baseline using a common convolutional feature learning module.
The advantage function is the difference between the action-value function
and the value function. We experiment with the above-mentioned variants 1.

3.2 Background
3.2.1 E(2)-equivariant convolution
In this section, we briefly describe the theory behind E(2)-equivariant con-
volution. First, we define the group T (2) ⋊ G where G ≤ O(2). T (2) is a
translational group on R2 and G is a subgroup of the orthogonal group O(2),
which are continuous rotations and reflections under which the origin is invari-
ant. Intuitively, we are dealing with the subgroups of the group of isometries
of a 2-D plane called E(2). In contrast to regular CNNs, which work with a
stack of multiple channels of features f : R2 → R, the steerable CNN defines
a steerable feature space of feature fields f : R2 → Rc which associates a c
dimensional feature vector f(x) ∈ Rc to every x ∈ R2. The feature fields are
linked to a transformation law that defines their transformations under the
action of a group. The transformation law of a feature field is characterized
by the group representation ρ : G 7→ GL(Rc), where GL(Rc) represents the
group of all invertible c×c matrices. This defines how each of these c channels
mixes when the vector f(x) is transformed. The operator for a transformation
tg, where t ∈ T (2) and g ∈ G, is given by:(

[IndT (2)⋊G
G ρ] (tg) .f

)
(x) := ρ(g).f

(
g−1 (x− t)

)
(3.1)

1This only covers papers before (Mondal et al., 2020) was published in 2019. We mention
the follow-up work in the community in the discussion

25

where [Ind
T (2)⋊G
G ρ] is called the induced representation as described in Sec-

tion 2.2. Analogous to the channels of a regular CNN, we can stack multiple
feature fields fi with their corresponding representation ρi and the stack

⊕
i fi

then transforms under
⊕

i ρi, which is a block diagonal matrix. Notice that
due to ρ being a block diagonal matrix each feature field transforms indepen-
dently. Having described the feature fields, we will next give the equation for
equivariance and the constraint it imposes on the convolution kernel. Consider
two feature fields fin : R2 → RCin with representation ρin, fout : R2 → RCout

with representation ρout and a convolution kernel k : R2 → Rcout×cin then the
desired equivariance is given by:

k ∗
(
[IndT (2)⋊G

G ρin] (tg) .fin

)
=

[IndT (2)⋊G
G ρout] (tg) .(k ∗ fout)

(3.2)

where convolution is defined as usual as:

fout(x) := (k ∗ fin)(x) =
∫
R2

k(y)fin(x+ y)dy (3.3)

This can only be achieved if we restrict ourselves to G-steerable kernels which
satisfy the kernel constraint:

k(gx) := ρout(g)k(x)ρin(g
−1) ∀g ∈ G & x ∈ R2 (3.4)

(Weiler & Cesa, 2019b) provide a comprehensive derivation of the basis of
the kernel that satisfies Eq. (3.4). Imposing this constraint on the kernels
significantly reduces the number of parameters and promotes parameter
sharing. Also, by obtaining equivariance in each convolution layer of the
network, they can be composed to extract equivariant features from the input
2D image signal. Further details on the kernel basis are provided in (Weiler
& Cesa, 2019c).

3.2.2 Choice of group and feature fields
We now discuss how one would choose a group (g) and its representation (ρ)
to define a feature field. The group’s choice mainly depends on the problem
we are tackling and to which kinds of transformation we wish the network
to output equivariantly. We have several options for E(2)-equivariant con-
volution, starting from discrete rotations and reflections (DN) to continuous
rotation and reflection (O(2)). Once a group is chosen, we need to choose its

26

representation. The most common ones are trivial, irreducible, and regular
representations. The representation chosen determines the dimension c of
a feature vector. While a trivial representation implies scalar features with
dimension 1 the regular representation uses an N -dimensional feature field,
where N denotes the order of the group we are using. Even though a regular
representation was shown to perform the best (Weiler & Cesa, 2019b), it is
computationally infeasible to use it when using higher-order groups. In such a
case, we use an irreducible representation, which takes the smallest dimension
while leaving the representation of all the group elements unique.

Let us assume that we are working with a genericDN group with its regular
representation. The next thing we need to choose is the number of feature fields
for each intermediate layer. Together the chosen representation and number
of feature fields contribute to the dimension of the stack

⊕
i fi of intermediate

feature fields, which further determines the depth of the convolution kernel
we are using between two feature fields. Although increasing the number
of feature fields increases the network’s capacity, this comes at the cost of
increased computation during a single forward pass.

In an environment where we have a global DN symmetry, where we want
DN equivariant features and N > 1, we can directly choose the group and
keep it throughout. But in most environments where there is usually a
global D1 symmetry and occasionally local DN symmetry, using the same
representation throughout would be unnecessary as this is accompanied by
an order of N increase in feature field dimension. To alleviate this problem,
we start with a higher-order group DN where N > 1 and as we go deeper
into our Q network, we restrict it to its subgroups (≤ DN). This makes the
network more computationally efficient while still extracting an equivariant
feature vector.

3.3 Equivariance in RL
3.3.1 Equivariance in Vectorized Policies
In this section, we demonstrate that for symmetric Markov Decision Processes
(MDPs), the policy network or Q network must be equivariant to the symmetry
group to achieve the invariances presented in Eq. (2.11), thereby implicitly
obtaining model minimization.

For an MDP symmetric with respect to the group GM, a GM-equivariant

27

policy network π : S ×A → R≥0 must satisfy:

π(a|g · s) = π(g−1 · a|s) ∀g ∈ GM, s ∈ S, a ∈ A. (3.5)

Under this condition, optimal policy functions become invariant under GM
action, i.e., π∗(a, s) = π∗(g · (a, s)) ∀g ∈ GM, s ∈ S, a ∈ A.

For finite actions and a vectorized policy network

π(s) = [π(a1|s), π(a2|s), . . . , π(an|s)]

, equation Eq. (3.5) simplifies to π(g · s) = g · π(s), where the action of g on
π(s) is a permutation of the n-dimensional vectorized policy. For other types
of policies, such as those with continuous action spaces, the corresponding
equivariance constraints can be derived. Existing work on building equivariant
networks for both discrete and continuous groups can be utilized. Additionally,
different actions of the same group on the state and action spaces can be
formalized for each specific problem.

Similarly, for finite actions and Q-learning based methods, assuming
the policy is argmaxaQ(s, a) and Q(s) = [Q(s, a1), Q(s, a2), . . . , Q(s, an)], an
equivariance constraint Q(g · s) = g ·Q(s) is required for the optimal action-
value function to be invariant under GM action, i.e.,

Q∗(s, a) = Q∗(g · (s, a)) ∀g ∈ GM, s ∈ S, a ∈ A.

This indicates that designing equivariant models for Q and policy networks
using the symmetries of the state-action space constrains the solution space.
This results in better sample efficiency in deep reinforcement learning algo-
rithms and provides robustness guarantees to the policy under distribution
shifts in the state space resulting from symmetry transformations, such as
those related to global rotations of the environment with respect to the agent.

Next, we explore how to identify these symmetries in an environment and
construct equivariant Q networks to learn an equivariant policy.

3.3.2 Choice of the Environment
In this chapter, we primarily experiment with two environments - the Snake
game of the Pygame Learning Environment (Tasfi, 2016) and the Atari
Pacman environment (Brockman et al., 2016) 2. In the Snake game3, the

2https://gym.openai.com/envs/MsPacman-v0/
3https://pygame-learning-environment.readthedocs.io/-

en/latest/user/games/snake.html

28

https://gym.openai.com/envs/MsPacman-v0/
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/snake.html
https://pygame-learning-environment.readthedocs.io/en/latest/user/games/snake.html

original (e) r r2 r3

t tr tr2 tr3

Figure 3.1: If we denote the 90 degree clockwise rotation by r and reflection over the
vertical axis as t, then the group elements of D4 are {e, r, r2, r3, t, tr, tr2, tr3} where e is
the identity action. These panels show the action of these group elements (transformations)
on a game screen and how they affect the optimal policy (shown by white arrows).

agent is a snake which grows in length each time it feeds on a food particle
and gets a reward of +1. The food particle is randomly placed somewhere
inside the valid area of a screen. The snake can choose four legal actions:
move up, move down, move left, and move right. A terminal state is reached
when the snake comes in contact with its body or the walls, and the agent
then receives a score of -1. From Figure 3.1, we see that under the action of
group elements of D4, the current optimal policy should change equivariantly,
which suggests the possible benefits of learning the Q values for each action
using equivariant features extracted from the game screen.

The Pacman game consists of a maze, a player agent and a few ghosts.
Food particles are placed along the paths of the maze while the ghosts move
freely around it. The player agent is also allowed four actions - move up,
move down, move right and move left and it gets a positive reward for each
particle it consumes without running into any of the ghosts. The game screen
has a global D1 symmetry and a degree of local D4 symmetry.

29

3.3.3 Equivariant Deep Q-Network Design
Henceforth in this chapter, “equivariant convolution" refers to E(2)-equivariant
steerable convolution. Suppose our preprocessed input is of dimensionm×d×d
where m is the number of channels and d × d is the size of the image. We
convert it into a feature field represented by s =

⊕
i∈I si where I = {1, ..,m}

and si is an image of dimension d × d. The transformation law of each
channel is given by trivial representation (ρtriv) of a chosen discrete group
(G) for each channel. We further choose a regular representation (ρreg) for
intermediate feature fields, which are permutation matrices given a group
element g ∈ G, to derive the kernel basis of equivariant convolution. Using
regular representation preserves the equivariance with point-wise nonlinear
activation functions such as ReLU. We stack equivariant convolutions followed
by ReLU to obtain an equivariant feature extractor Feqv : Rm×d×d → Rn

where n denotes the dimension of extracted equivariant features. The detailed
architecture of this feature extractor and its relationship to the vanilla feature
extractor that is used in DDQN are in Section 3.3.4. Assuming that we do
not restrict the group G along the depth of the network, our transformation
rule of the extracted feature vector with respect to the transformation of
input is given by:

Feqv

(
[IndT (2)⋊G

G ρtriv] (tg) s; θ
)
= ρ(g) (Feqv (s; θ)) (3.6)

where ρ(g) =
⊕

j∈J ρreg(g) and(
[IndT (2)⋊G

G ρtriv] (tg) s
)
(x) :=

⊕
i∈I

[
si
(
g−1 (x− t)

)]
Note that Equation 3.6 gives the desired equivariance and J = {1, .., (n/N)}
where N is the order of the g. N divides n and n/N is the number of feature
fields at the output. Intuitively, Equation 3.6 means that at every feature
field, the values are permuted along its dimension when we transform the
input by some group element. Also note that if we restrict the group along
the depth we will have gres ∈ Gres ≤ G in the RHS of Equation 3.6 instead of
g. Having obtained the feature vector which transforms equivariantly we can
add a final linear layer to obtain the Q values:

Qeqv(s, a, ϕ) = Wa.Feqv(s; θ) + ba (3.7)

where a ∈ A = {1, .., |A|}, Wa = [wa1..wan] and ϕ = {θ,W1, ..,W|A|, b1, .., b|A|}
(the set of all parameters). This choice of model architecture strikes a balance

30

between equivariance constraints and flexibility. While the intermediate rep-
resentations maintain equivariance, the inclusion of a standard linear layer in
the final stage provides the model with adaptability across diverse datasets.
This design offers dual benefits: in symmetric environments, the equivariant
structure provides a valuable inductive bias, accelerating learning. Conversely,
in non-symmetric scenarios, the model’s performance remains uncompromised,
ensuring its versatility across a wide range of applications. This approach
effectively leverages symmetry when present without imposing restrictions
on the model’s general applicability. We use DDQN as our baseline model
throughout this work whose final loss at iteration l is given by:

L(ϕl) = Es,a,r,s′
[(
yDDQNl −Qeqv(s, a, ϕl)

)2]
(3.8)

with target:

yDDQNl = r + γQeqv(s
′, argmax

a′
Qeqv(s

′, a′, ϕl), ϕ
−) (3.9)

where ϕ− represents the parameters of the frozen network. The gradients
computed through both the linear and the equivariant feature extractor
networks are backpropagated to update their parameters.

E-Conv

Relu

E-Conv

Relu

E-Conv

Relu

Conv

Relu

Conv

Relu

Conv

Relu

E-Conv
(di x di)

Relu

Linear

Relu

n

Linear

Equivalent
operation

Vanilla DQN

Equivariant DQN

Feqv

Linear

m d

d

m d

d

mi
di

di

di
dimi

n̂
^

Figure 3.2: Juxtaposed Network architecture

3.3.4 Network Architecture
The baseline Vanilla DDQN used in this work is similar to the one used in
(Mnih et al., 2013a), which has an output dimension equal to the number of

31

actions. As shown in Fig. 3.2, our proposed Equivariant DDQN architecture
mainly replaces the Vanilla convolutions(Conv) and the second last linear
layer with equivariant convolutions(E-Conv). We call this an equivariant
feature extractor. We want to emphasize the last E-Conv layer and point-out
that its operation is similar to the second last linear layer in a Vanilla DDQN.
As we use the filter size of the dimension of feature size before that layer, all
the information is captured as a weighted sum into a 1-D vector. Although
this is the same as the flattening of the feature and then applying a linear
layer, using E − Conv renders the output vector equivariant.

The final linear layer is the same for both and maps them to Q-values for
each action. Notice, as mentioned in Section 3.2.2, the group representation
and the number of feature fields will determine the sizes of intermediate
features. We aim to make both networks similar with respect to computation
time while not comprising the capacity of the Equivariant model. Below
we provide the architecture of the Equivariant and Vanilla DDQN for both
Snake and Pacman. We denote a basic convolution by: Conv(filtersize×
filtersize, inchannels, outchannels, stride, padding) and equivariant one by:
E−Conv(filtersize×filtersize, infields, outfields, stride, padding)[Group]
The group restriction operation is denoted by: GrpRes[Group→ Subgroup].
In the Vanilla and Equivariant DDQN, we denote the size of the output of
the third convolution by m̂i × di × di and mi × di × di respectively. Using
this, we give the exact architecture of both networks below.

Snake

Vanilla DDQN

Conv(7× 7,m, 32, 2, 2)−ReLU
Conv(5× 5, 32, 64, 2, 1)−ReLU
Conv(5× 5, 64, 64, 1, 1)−ReLU
Linear(m̂i × di × di, 256)−ReLU
Linear(256, |A|)

Equivariant DDQN

E-Conv(7× 7,m, 8, 2, 2)[D4]−ReLU
E-Conv(5× 5, 8, 12, 2, 1)[D4]−ReLU
E-Conv(5× 5, 12, 12, 1, 1)[D4]−ReLU
E-Conv(di × di, 12, 32, 1, 0)[D4]−ReLU
Linear(256, |A|)

Although there is a difference in the number of channels and feature
fields, the overall runtime of the DDQN algorithms with both networks is
similar. The forward pass of the Equivariant network is more computationally
expensive as the total dimension of the stack of feature fields in some layers
is more than the number of channels in the Vanilla network. But this is

32

Pacman

Vanilla DDQN

Conv(7× 7,m, 32, 4, 2)−ReLU
Conv(5× 5, 32, 64, 2, 2)−ReLU
Conv(5× 5, 64, 64, 2, 1)−ReLU
Linear(m̂i × di × di, 512)−ReLU
Linear(512, |A|)

Equivariant DDQN

E-Conv(7× 7,m, 8, 2, 2)[D4]−ReLU
E-Conv(5× 5, 8, 16, 2, 1)[D4]−ReLU
GrpRes[D4 → D1]

E-Conv(5× 5, 16, 64, 1, 1)[D1]−ReLU
E-Conv(di × di, 64, 384, 1, 0)[D1]−ReLU
Linear(768, |A|)

partially compensated for during the backpropagation where we are updating
fewer parameters in an Equivariant network. Note that, in general, adding
feature fields increases the capacity at the cost of computation, but we keep
the total cost with respect to the Vanilla model in mind while choosing them.
Also, as the Pacman environment is globally symmetric to the D1 group, we
restrict the group once D4 symmetric lower-level features are extracted, which
also reduces the dimension of representation and hence the computation cost
significantly.

Network Type Vanilla DQN Number of Parameters

Vanilla DDQN Snake 583.46k
Equivariant DDQN Snake 57.7k

Vanilla DDQN Pacman 984.36k
Equivariant DDQN Pacman 649.93k

Table 3.1: This table gives the number of parameters of both the Networks.

3.4 Experiments
We first consider the performance of a carefully designed equivariant DDQN,
keeping in mind the symmetry of the game, compared to a vanilla DDQN. For a
fair comparison, we keep the settings of the environment and hyperparameters
the same for all the experiments4. We report in Figure 3.3 the evolution

4Link to the code: https://github.com/arnab39/EquivariantDQN

33

https://github.com/arnab39/EquivariantDQN

DDQN in Snake DDQN in Pacman

DDQN with priority replay in Snake Dueling DQN in Snake

Figure 3.3: Plots of the evolution of average rewards with the number of episodes
using different methods in Snake and Pacman. We show the confidence intervals over 10
different seeds. The plots are smoothed with a 1D Gaussian filter with σ=3 for improved
visualization.

of rewards collected over the training episodes for both the models in the
Snake and the Pacman environments. Our proposed model attains a 30%
improvement in average reward collected after training for 3000 episodes in
the highly symmetric Snake environment. Interestingly this improvement in
data-efficiency comes even with a 90% reduction in the number of parameters.
This verifies our hypothesis that the parameters required to learn policies of
the identity transformation would be sufficient to generalize to optimal policies
in other transformations for the Snake environment. In the case of Pacman,
we notice our model performs slightly better in the initial episodes, with a
34% reduction in the number of parameters. But once both the models have

34

seen enough samples, the margin of difference vanishes. In Fig. 3.3, we also
show that the proposed method gives similar results with other subsequent
improvements, such as using DDQN with priority replay and the Dueling
architecture.

We further investigate the usefulness of the inherent inductive bias in the
model to out-of-distribution generalization with respect to the transformation
of the environment screen. For this part, we remove the group restriction from
the Equivariant DDQN of the Pacman game and make the feature extractor
D4 equivariant. First, we train both the Vanilla and Equivariant models.
We then change the environment by rotating the input screen by 90 degrees
clockwise (r). Leaving the rest of the network frozen, we retrain the final linear
layer for this new environment. We show in Table 3.2 that while a regular
CNN-based feature extractor fails, the Equivariant feature extractor can still
find a decent policy after learning the linear layers for certain epochs. The
results of a simple path planning problem like Snake, indicate that our model
can, in principle, be extended to more complex continuous path planning
problems such as in UAVs (Zhang et al., 2015; Challita et al., 2018). Such
scenarios would benefit both from faster learning due to increased sample
efficiency and viewpoint transformation equivariant features for optimal policy
learning, which can generalize to new transformations of the environment.

Transformation Vanilla DDQN Equivariant DDQN
e 129 ± 2.3 125 ± 4.5
r 48.9 ± 2 99 ± 4.7
r2 53 ± 3.5 104 ± 3.4
r3 51 ± 1.9 98 ± 3.9

Table 3.2: Average reward over 200 episodes of Pacman for 5 seeds reported with a
confidence level of 95% for different environment transformations. e is the original screen.

3.5 Discussion
We have introduced an Equivariant Deep-Q learning algorithm, and have
demonstrated that it provides a considerable boost to performance with
parameter and sample efficiency when carefully designed for highly symmetric
environments. We have also shown that this approach generalizes policies
well to new unseen environments obtained by an affine transformation of the
original environment. Although equivariant models in supervised learning

35

were shown to make the models robust when introduced in (Mondal et al.,
2020), this was the first time has been proposed in a Deep RL framework.

Limitations The methods presented in the current chapter are limited to
finite discrete action spaces and the discrete group of transformations of state
action. In theory, we can leverage more from our equivariance formulation in
continuous groups as the reduction in the solution space by constraining the
policy is directly proportional to the size of the group of transformation.

Another significant limitation of this method is the need to know the
symmetry group and its action in the state and action space a priori, in order
to be able to learn the equivariant representation. We tackle this hard problem
in the second part of this thesis and design methods to learn equivariant
representations directly from the observed data. Moreover, designing a novel
equivariant network architecture for different applications is challenging for
Deep RL practitioners without the knowledge of relevant techniques from
the Equivariant Deep Learning literature. Additionally, adapting this idea
to existing techniques for real-world applications is challenging, especially
because it requires careful redesign of the architecture and training them from
scratch. To address these limitations, in the next two chapters, we motivate
and provide novel techniques to build equivariance into the overall model,
without constraining every layer in the main architecture of the model.

Follow-up work in the community Many follow-up works on the concepts
of symmetry and equivariance have gained significant attention in the fields
of deep reinforcement learning (RL) and robotics. As discussed in this
chapter, these papers offer promising avenues for improving sample efficiency,
generalization, and overall performance of Deep RL algorithms.

Symmetry in RL has been explored in various contexts. (van der Pol et al.,
2020b) proposed MDP homomorphic networks for exploiting symmetries in
RL algorithms like PPO and Actor-Critic, showing enhanced generalization
across different environments. (Wang et al.) introduced SO(2) equivariant
actor-critic methods, demonstrating improved sample efficiency in continuous
control tasks. (Nguyen et al., 2023) extends these ideas to partially observable
environments.

Expanding beyond traditional RL domains, in the realm of AI for Science,
Simm et al. (2020) developed SO(3)-equivariant networks for learning gen-
eralizable policies using the Actor-Critic method for molecular design. The
application of these principles extends to multi-agent reinforcement learning as
well. van der Pol et al. (2021) proposed symmetric multi-agent reinforcement

36

learning, leveraging permutation invariance to improve coordination among
agents.

These advancements highlight the potential of symmetry and equivariance
in improving the efficiency and generalization capabilities of RL algorithms
in both simulated environments and real-world robotic applications. As the
field progresses, we anticipate further integration of these principles into more
complex and diverse RL scenarios.

37

4
Equivariance Through

Canonicalization

In the previous chapter, we have seen that the design of machine learning
models that effectively harness the structure and symmetry of data is crucial.
In many scenarios, the transformations required for models to maintain invari-
ance or equivariance are already identified, providing a strong inductive bias
grounded in similar principles observed in human cognition (e.g., Bronstein
et al., 2021b; Bogatskiy et al., 2022; van der Pol et al., 2020b; Mondal et al.,
2020; Celledoni et al., 2021). This is evident in visual shape recognition
(Shepard & Metzler, 1971; Carpenter & Eisenberg, 1978), where humans can
effortlessly differentiate between object orientations and actual structural
changes, a capability mirrored in various deep learning approaches.

These approaches range from viewpoint-independent models that impose
equivariance through constraints in the architecture (Shawe-Taylor, 1989;
Cohen & Welling, 2016a; Ravanbakhsh et al., 2017) or use invariants as inputs
(Villar et al., 2021), to multiple-view models that average over different orien-
tations (Manay et al., 2006; Benton et al., 2020; Yarotsky, 2022; Puny et al.,
2022), to single-view-plus-transformation-based models that transform the
objects to a canonical orientation. (see Fig. 4.1) It is particularly noteworthy

38

Figure 4.1: A classification of different frameworks for equivariant predictions. In this
example, the task is to restyle an MNIST digit in a rotation equivariant way. We propose
a class of models that falls in the single-view-plus-transformation framework.

that single-view-plus-transformation-based models have been underexplored
in machine learning, despite cognitive science evidence suggesting their use in
human cognition (Shepard & Metzler, 1971; Carpenter & Eisenberg, 1978;
Hinton & Parsons, 1981). When humans encounter a rotated pattern, the
time it takes to recognize the pattern correlates with the rotation angle,
indicative of a "mental rotation" process.

This understanding leads us to this chapter, where we introduce a robust
method for equivariant machine learning that employs mappings to canonical

39

samples, seamlessly fitting into existing architectures to ensure adaptability
to a wide range of transformations, both discrete and continuous. We propose
learning this canonical orientation using canonicalization functions, rather
than manually designing them. This yields better performance, merging the
expressivity and practicality of frame averaging techniques with the efficiency
of end-to-end learning processes (Puny et al., 2022).

Our contributions underscore the versatility and efficacy of this approach:
we provide a comprehensive framework for achieving equivariance across
diverse groups, proven to be universal approximators of equivariant functions
in certain settings. Experimentally, our method has demonstrated significant
improvements in processing images, physical dynamics, and point clouds,
validating the hypothesis that a learned canonicalization approach surpasses
traditional design methods in both theory and practice.

4.1 Canonicalization Functions
Recall from Section 2.3 that we are interested in learning functions f : X → Y
with inputs x ∈ X and outputs y ∈ Y belonging to finite-dimensional normed
vector spaces.

Now, a function f is G-equivariant if

f (ρ (g)x) = ρ′ (g)f (x) , ∀ g,x ∈ G × X , (4.1)

where the group action ρ on the input and the group action ρ′ on the output
will be clear from the context.

4.1.1 General Formulation
The invariance requirement on a function f amounts to having all the members
of a group orbit mapped to the same image by f . It is thus possible to
achieve invariance by appropriately mapping all elements to a canonical orbit
representative before applying any function. For equivariance, elements can
be mapped to a canonical sample and, after a function is applied, transformed
back according to their original position in the orbit. This can be formalized
by writing the equivariant function f in canonicalized form as

f (x) = h′ (x)p
(
h (x)−1 x

)
, (4.2)

where the function p : X → Y is called the prediction function and the
function h : X → ρ (G) is called the canonicalization function. Here h (x)−1

40

is the inverse of the representation matrix and h′ (x) = ρ′ (ρ−1 (h (x))) is the
counterpart of h (x) on the output.

Equivariance in Eq. (4.2) is obtained for any prediction function if the
canonicalization function is itself G-equivariant, h (ρ (g)x) = ρ (g)h (x) ∀ g, x ∈
G × X . 1

It may seem like the problem of obtaining an equivariant function has
merely been transferred in this formulation. This is, however, not the case:
in Eq. (4.2), the equivariance and prediction components are effectively
decoupled. The canonicalization function h can therefore be chosen as a simple
and inexpressive equivariant function, while the heavy lifting of representation
learning is done by the prediction function p.

4.1.2 Partial Canonicalization
A more general condition can be formulated, such that the decoupling is
partial. This enables us to impose part of the symmetry constraint on the
prediction network and use canonicalization for “additional” symmetries. This
could, for example, be used to imbue a translation equivariant architecture,
like a CNN, with rotation equivariance.

Theorem 4.1.1. For some subgroup K ≤ G, if ∀ g,x ∈ G × X there exists a
k ∈ K such that

h (ρ (g)x) = ρ (g)h (x) ρ (k) , (4.3)

and the prediction function p is K-equivariant, then f defined in Eq. (4.2) is
G-equivariant.

Proof. We have

f (ρ (g)x) = h′ (ρ (g)x)p
(
h (ρ (g)x)−1 ρ (g)x

)
(4.4)

If equation 4.3 is satisfied, then ∀ g,x ∈ G × X there is a k ∈ K such that

f (ρ (g)x) = ρ′ (g)h′ (x) ρ′ (k)p
([
ρ (g)h (x) ρ (k)−1]−1

ρ (g)x
)

(4.5)

f (ρ (g)x) = ρ′ (g)h′ (x) ρ′ (k)p
(
ρ (k)−1 h (x)−1 ρ (g)−1ρ (g)x

)
(4.6)

1Symmetric inputs in X pose a problem if we use the standard definition of equivariance
for the canonicalization function. We explain this in (Kaba et al., 2023) and introduce the
concept of relaxed equivariance that solves this issue.

41

Using the K-equivariance of p, we obtain

f (ρ (g)x) = ρ′ (g)h′ (x) ρ′ (k) ρ′ (k)−1 p
(
h (x)−1x

)
(4.7)

f (ρ (g)x) = ρ′ (g)h′ (x)p
(
h (x)−1x

)
(4.8)

This is equivalent to saying that the canonicalization function should
output a coset in G/K in an equivariant way, the applied transformation
being chosen arbitrarily within the coset.

This can be simplified when the group factors into a semi-direct product
using the following result.

Theorem 4.1.2. If K is a normal subgroup such that G ≃ J ⋉K, condition
Eq. (4.3) can be realized with a canonicalization function with image ρ (J),
and that is J -equivariant and K-invariant.

Proof. We consider the special case where K is a normal subgroup of G such
that the group can be taken to be isomorphic to a semidirect product G ≃
K ⋊ J . Then, group elements can be written as g = (k, j), where k ∈ K and
j ∈ J . The product is defined as g1g2 = (k1, j1) (k2, j2) = (k1φ [j1] (k2) , j1j2),
where φ : J → Aut (K) is a group homomorphism. Setting k2 = e and j1 = e,
we get any group element as (k1, e) (e, j2) = (k1, j2).

If the canonicalization function is J -equivariant and K-invariant, we have

h (ρ (k, j)x) = h (ρ (k, e) ρ (e, j)x) (4.9)
h (ρ (k, j)x) = ρ (e, j)h (x) (4.10)

We then show that there is a k′ ∈ K such that equation 4.3 is satisfied.
Multiplying by ρ (e) = ρ (k, e) ρ (e, j)h (x)h (x)−1 ρ (e, j)−1 ρ (k, e)−1 on the
left, we have

ρ (e, j)h (x) = ρ (k, e) ρ (e, j)h (x)h (x)−1 ρ (e, j)−1 ρ (k, e)−1 ρ (e, j)h (x)
(4.11)

Using the fact that conjugation of an element of K by an element of G preserves
K membership, we define ρ (k′, e) = h (x)−1 ρ (e, j)−1 ρ (k, e)−1 ρ (e, j)h (x)

ρ (e, j)h (x) = ρ (k, e) ρ (e, j)h (x) ρ (k′, e) (4.12)

42

which shows that equation 4.3 is satisfied.
Finally, we show that in this case, the image of h can be chosen to be ρ (J).

We first remark that in each orbit X/G of the group action, the canonical
sample x̂ can be obtained from any orbit member x, as x̂ = h (x)−1 x. For
the canonical sample, we must have a k ∈ K such that

h
(
h (x)−1 x

)
= h (x)−1 h (x) ρ (k, e) (4.13)

If we impose k = e to satisfy this condition, we have h (x̂) = ρ (e, e).
Since any orbit member can conversely be written as x = ρ (k, j) x̂ for

some k ∈ K and j ∈ J , if the canonicalization function is J -equivariant and
K-invariant, we have

h (x) = h (ρ (k, j) x̂) = ρ (e, j)h (x̂) = ρ (e, j) (4.14)

which completes the proof.

Going back to the example of using rotation canonicalization with a
CNN, Theorem 4.1.1 says that the canonicalization function should output
an element of the Euclidean group transforming equivariantly under rotations
of the input. Since the translation subgroup is normal, Theorem 4.1.2 can
be used to guarantee that the canonicalization network can always simply
output a rotation.

In general, whenK = {e}, only the canonicalization function is constrained,
which is the case described at the beginning of the section. In the image
domain, this would correspond to canonicalizing with respect to the full
Euclidean group and using an MLP as a prediction function. The other
extreme, given by K = G, corresponds to arbitrarily transforming the input
and constraining the prediction function as is usually done in equivariant
architectures like Group Equivariant Convolutional Neural Networks (G-
CNNs) (Cohen & Welling, 2016b). These are, respectively, the single-view-
plus-transformation and the viewpoint-independent implementations described
in the introduction. Subgroups {e} < K < G offer intermediary options;
the lattice of subgroups of G, therefore, defines a family of models. Since
equivariance to a smaller group is less constraining for the prediction function,
set inclusion in the subgroup lattice is equivalent to increased expressivity for
the corresponding models.

43

4.2 Design of Canonicalization Functions
The canonicalization function can be chosen as any existing equivariant neural
network architecture with the output being a group element; we call this the
direct approach (figure 4.2a). For permutation groups and Lie groups, an
equivariant multilayer perceptron (Shawe-Taylor, 1989; Finzi et al., 2021) can
be used. We provide examples of implementations in the next section.

We also introduce an alternative method, which we call the optimization
approach (Fig. 4.2b). The canonicalization function can be defined as

h (x) ∈ argmin
ρ(g)∈ρ(G)

s (ρ (g) ,x) , (4.15)

where s : ρ (G)×X → R can be a neural network. When a set of elements min-
imizes s, one is chosen arbitrarily. s has to satisfy the following equivariance
condition

s (ρ (g) , ρ (g1)x) = s
(
ρ (g1)

−1 ρ (g) ,x
)
, ∀g1 ∈ G, (4.16)

and has to be such that argmin is a subset of a coset of the stabilizer of x.
This last condition essentially means that the minimum in each orbit should
be unique up to input symmetry.

The equivariance condition on s can be satisfied using an equivariant
architecture. Remarkably, it can also be satisfied using a non-equivariant
function E : X → R and defining

s (ρ (g) ,x) = E
(
ρ (g)−1 x

)
. (4.17)

We will call the function E energy. Intuitively, E represents a distance between
the input and the canonical sample of the orbit and is therefore minimized
when ρ (g) is the transformation that maps to the canonical sample.

This implementation presents a close analogy with the mental rotation
phenomenon described in the introduction, as humans try to minimize the
distance between their representation of an object and the canonical one. As
such, it is expected that the optimization process will take more iterations
when the input sample is farther away in orbit from the canonical sample.
This is consistent with the experimental evidence for mental rotation (Shepard
& Metzler, 1971; Carpenter & Eisenberg, 1978).

Simultaneous minimization and learning of s results in a bi-level optimiza-
tion problem (Gould et al., 2016; Liu et al., 2021a). This can be performed

44

(a) Direct approach (b) Optimization approach

Figure 4.2: Two general approaches to canonicalization. In the direct approach, an
equivariant neural network outputs the transformation. In the optimization approach, a
function of the input is minimized to obtain the canonical sample.

in a variety of ways, including using implicit methods (Blondel et al., 2022).
Next, we elaborate on how suitable canonicalization functions can be obtained
in different settings.

4.2.1 Euclidean Group
The Euclidean group E (d) describes rotation, translation, and reflection
symmetry. Domains in which this type of symmetry is especially relevant
include computer vision, point cloud modelling and physics applications.
Below we give design principles to obtain equivariant models for image and
point cloud inputs.

Image Input. Elements of the Euclidean group can be written as (O, t),
where O ∈ Rn×n is an orthogonal matrix and t ∈ Rn is an arbitrary translation
vector. We consider the space of image inputs xI ∈ X as given by a 2
dimensional signal xI : R2 → RC , where C is the number of input channels.
We adopt a continuous description to facilitate exposition, but in practice, all
the operations are discretized using interpolation (Riba et al., 2020). This
thus reduces to the pnm group, which is the group of n-fold discrete rotations,
reflections and discrete translations. However, to maintain consistency with
the rest of the chapters we will use Cn and Dn to refer to the group of discrete
rotations and reflections.

45

The action of the representation on image inputs is defined by the following
linear operator:

[ρ (O, t) · xI](p) = xI(O
−1(p− t)), ∀p ∈ R2,

where p is pixel position. The canonicalization function should output
an element of the E (2). It should also be E (2)-equivariant, such that
h (ρ (O, t) · xI) = ρ (O, t) · h (xI).

This condition can be satisfied by using a Group Equivariant CNN (G-
CNN) (Cohen & Welling, 2016a) and the optimization approach described
above. To do this, we define the function to be optimized as s : O (2) ×
R2 × X → R. This can be reinterpreted as s : X → RO(2)×R2 , which means
where the first dimension, a.k.a. the fiber, encodes rotation angles2 and R2

is associated with pixel positions. If s is a G-CNN, it correctly satisfies
the condition Eq. (4.16), as image rotations act on the fiber and Euclidean
transformations on the pixel positions. The canonicalization is then obtained
by taking the argmin over pixel positions and fibers

h (x) ∈ argmin
(O,t)∈E(2)

s (x)(O,t) . (4.18)

This approach can be further simplified if we use a translation equivariant
prediction network, such as a CNN-based architecture. As the translation
group T (2) is a normal subgroup of the Euclidean group E(2), using The-
orem 4.1.2, we only require the canonicalization function to be equivariant
to O(2). This means we can pool over the spatial dimension in the output
feature map of the canonicalization function and only need to take an argmin
along the rotation fiber dimension to output a rotation that can be applied
to the image.

There are two potential problems with this approach. First, extending
G-CNNs to a higher number of finer discrete rotations is computationally
expensive, and it leads to artifacts. Second, we cannot backpropagate through
the canonicalization function as the argmin operation is not differentiable.

We can avoid the first problem by using a shallower network with a larger
filter size. We empirically show why this is a sound choice for canonicalization
function in Section 8.4. We use the straight-through gradient estimator
(Bengio et al., 2013b) to solve the second problem.

2In practice, we work with discrete rotations Cn.

46

Point Cloud Input. The n+1 dimensional representation of the Euclidean
group (defined by concatenating a constant 1 to the original vectors) is defined
in the following way

ρ(O, t) =

(
O t
tT 1

)
. (4.19)

We seek to define an E (d)-equivariant canonicalization function for point
clouds. This can be done by defining it as h (x) = ρ

(
hO (x) , ht (x)

)
, where

the function hO : X → Rn×n outputs the rotation and reflection and ht :
X → Rn the translation. Since the product of elements of E (n) is given
by (O1, t1) (O2, t2) = (O1O2,O2t1 + t2), the equivariance condition requires
that we have

hO (ρ(O, t)x) = OhO (x) , (4.20)
ht (ρ(O, t)x) = Oht (x) + t. (4.21)

This means that hO must be O (d)-equivariant and translation invariant, and
that ht must be E (d)-equivariant. These constraints can be satisfied by using
already existing equivariant architectures. Since most of the work will be done
by a prediction function that can be very expressive, like Pointnet (Qi et al.,
2017a), a simple and efficient architecture can be used for the canonicalization
function, for example, Vector Neurons (Deng et al., 2021). The output of
hO can be made an orthogonal matrix by having it output n vectors and
orthonormalizing them with the Gram-Schmidt procedure.

4.3 Experiments
To test the versatility of our method we perform experiments in three different
data domains and report the results in the following subsections.

Our code can be found in https://github.com/arnab39/equiadapt

4.3.1 Image classification
We first perform an empirical analysis of the proposed framework in the
image domain. We selected the Rotated MNIST dataset (Larochelle et al.,
2007), often used as a benchmark for equivariant architectures. The task is to
classify randomly rotated digits. In Table 4.1, we compare our method with
different CNN and G-CNN (Cohen & Welling, 2016a) baselines. We denote
the network is equivariant to Cn by putting it with the network’s name (e.g.

47

https://github.com/arnab39/equiadapt

Table 4.1: Comparison with the existing work for Rotated-MNIST.

Method Error % ↓

CNN (base) 4.90 ± 0.20
G-CNN (C4) 2.28 ± 0.00
G-CNN (C4 & = params) 2.36 ± 0.15
G-CNN (C64 & = params) 2.28 ± 0.10
CNN (= params) 4.80 ± 0.37

Ours

LC(PCA)-CNN 3.35 ± 0.21
LC(C4 & frozen)-CNN 3.91 ± 0.12

LC(OPT)-CNN 3.35 ± 0.00
LC(C4)-CNN 2.41 ± 0.10
LC(C64)-CNN 1.99 ± 0.10

G-CNN(C4)). For CNN (base), we choose an architecture with 7 layers where
layer 1 to 3 has 32, 4 to 6 have 64, and layer 7 has 128 channels, respectively.
Instead of pooling, we use convolution filters of size 5× 5 with a stride 2 at
layers 4 and 7. The remaining convolutions have filters of size 3× 3 and stride
1. All the layers are followed by batch-norm (Ioffe & Szegedy, 2015) and ReLU
activation with dropout(p=0.4) only at layers 4 and 7. For G-CNN, we took
the same CNN architecture as above and replaced the standard convolutions
with group convolutions (Cohen & Welling, 2016b).

For the canonicalization function, we choose a shallow G-CNN with three
layers. The first layer is a lifting layer which maps the signal in the pixel
space to the group with filters that are the same size as the input image.
This is followed by ReLU nonlinearity and group equivariant layers with 1× 1
filters. We learn the canonicalization function end-to-end with a CNN as
the prediction function and denote it as LC(Cn)-CNN where LC stands for
learned canonicalization.

We also implement the optimization approach of Eq. (4.17) as LC(OPT)-
CNN. Our E converts the input image into a point cloud representation,
which is fed into a PointNet that produces the energy. We use gradient
descent to optimize this energy with respect to the input rotation for a small
number of steps. For the energy function E, the image is transformed to
a point cloud and fed into a Deep Sets (Zaheer et al., 2017b) architecture.
Then, E is optimized by 5 steps of gradient descent (learning rate 0.1) using

48

Table 4.2: Ablation study on the effect of augmentation.

Method Error % ↓

CNN (base) 4.90 ± 0.20

CNN (rotation aug.) 3.30 ± 0.20
LC(pretrained)-CNN 2.05 ± 0.15
LC(p64)-CNN 1.99 ± 0.10

implicit differentiation. This procedure is visualized in Fig. 4.2b.
For the pure G-CNN-based baseline, we provide the value reported by

Cohen & Welling (2016a) and design a variant which has a similar architecture
to CNN (base) while matching the number of parameters of our LC(C4)-CNN.
We call this G-CNN (p4 & = params).

Lastly, we consider variants where the canonicalization function is not
learned. The first one is using a G-CNN similar to LC(Cn) but with weights
frozen at initialization. We call them LC(C4 & frozen)-CNN and LC(C64 &
frozen)-CNN. For the second one, canonicalization is performed by finding
the orientation of the digits using Principal Component Analysis (PCA) and
we refer to it as LC(PCA)-CNN.

Training details. In all our image experiments, we train the models by
minimizing the cross entropy loss for 100 epochs using Adam (Kingma &
Ba, 2014) with a learning rate of 0.001. We perform early stopping based on
the classification performance of the validation dataset with patience of 20
epochs.

Results As reported in Table 4.1 the direct canonicalization approach
outperforms the CNN-based baseline and is comparable to G-CNNs. The
optimization version does not perform as well, even if it is still better than the
non-equivariant baseline. We have found that this is because gradient descent
can get stuck in flat regions. We see that using a fixed canonicalization function
technique like PCA or canonicalization function with frozen parameters
improves performance over the CNN baseline. Learning the canonicalization
function provides a significant performance improvement.

Ablation study We further seek to understand if learning the canonical-
ization performs better mainly because a meaningful function is learned, or
because this implicitly augments the prediction CNN with rotations during
training. We perform an ablation study to investigate this. First, we com-

49

Figure 4.3: Inference time comparison of our method with G-CNN with increasing order
of rotations.

pare with a CNN trained with random rotation augmentations. Second, we
compare with a setup we call LC(pretrained), in which canonicalization is
learned along with a CNN prediction network. Then the prediction function
is reinitialized and trained from scratch while the canonicalization function is
fixed. If meaningful canonicalization is learned, this setup should perform
close to the one where the canonicalization is learned end-to-end. We see
from the results of Table 4.2 that this is the case. The pretrained canon-
icalization is competitive with the end-to-end one and significantly better
than data augmentation. Next, we perform experiments to understand the
role of different components in our model using the C8 group. First, we

Table 4.3: Impact of the number of layers in canonicalization function network and order
of the discrete rotations to which it is equivariant on the performance.

#lyrs Order of the discrete rotation group
C4 C8 C16 C32 C64

1 2.52 ± 0.12 2.37 ± 0.09 2.20 ± 0.08 2.05 ± 0.15 2.01 ± 0.09
2 2.44 ± 0.06 2.31 ± 0.05 2.16 ± 0.09 2.00 ± 0.07 2.02 ± 0.12
3 2.41 ± 0.11 2.28 ± 0.09 2.11 ± 0.06 1.98 ± 0.09 1.99 ± 0.10

vary the number of layers of the canonicalization network and the number
of rotations it is equivariant to. For this, we extend the layers of G-CNN

50

to any arbitrary rotations. As we noticed that using a larger filter leads to
better performance for higher order rotations, we stick to architecture with a
lifting layer with image-sized filters followed by 1× 1 filters. From Table 4.3,
we notice that adding equivariance to higher order rotation in the canonical-
ization function leads to significant performance improvement compared to
adding more layers. Fig. 4.4 shows the canonical orientation resulting from
the learnt canonicalization function with a single lifting layer on 90 randomly
sampled images of class 7 from the test dataset. This suggests that a shallow
network is sufficient to achieve good results with a sufficiently high order of
discrete rotations. For c64, we see that all the similar-looking samples are
aligned in one particular orientation. In contrast, although techniques like
PCA or freezing parameters of the canonicalization function find the correct
canonicalization function for simple digits like 1, they struggle to find stable
mappings for more complicated digits like 7.

Inference time Next, we compare the inference time of our model with
pure G-CNN-based architectures. For this experiment, we take the CNN
architecture of our predictor network and replace the convolutions with group
convolutions. As increasing the rotation order in G-CNN requires more copies
of rotated filters in the lifting layer and more parameters in the subsequent
group convolution layers, we decreased the number of channels to keep the
number of parameters the same as our model. Figure 4.3 shows that although
G-CNN’s performance is slightly better for the C4 group, increasing the
order of discrete rotations improves our model’s performance significantly
compared to G-CNN. In addition to performance gain, our model’s inference
speed remains more or less constant while encoding invariance to higher-
order rotations due to the shallow canonicalization network. This makes
our approach more suitable for building equivariance for bigger groups and
network architectures.

4.3.2 N-body dynamics prediction
Simulation of physical dynamics is an important class of E(3)-equivariant
problems due to the symmetry of physical laws under rotations and transla-
tions. We evaluate our framework in this setting with the N -body dynamics
prediction task proposed by (Kipf et al., 2018) and (Fuchs et al., 2020b). In
this task, the model has to predict the future positions of 5 charged particles
interacting with Coulomb force given initial positions and velocities. We use
the same version of the dataset and setup as (Satorras et al., 2021).

51

(a) Original (b) C4 (c) C8 (d) C16

(e) C32 (f) C64 (g) C64 (fr) (h) PCA

(i) Original (j) C4 (k) C8 (l) C16

(m) C32 (n) C64 (o) C64 (fr) (p) PCA

Figure 4.4: Canonicalized images from different canonicalization functions for digit 7
and 1.

For this experiment, our architecture uses a simple 2-layer Vector Neurons
version of the Deep Sets architecture for the canonicalization function (Deng
et al., 2021; Zaheer et al., 2017a). The prediction function is a 4-layer Graph
Neural Network (GNN) with the same hyperparameters as the one used in
(Satorras et al., 2021), and (Puny et al., 2022) for a fair comparison. The
architecture of the prediction network was, therefore, not optimized. The
canonicalization network is much smaller than the prediction GNN, with

52

Table 4.4: Test MSE for the N-body dynamics prediction task.

Method MSE

Linear 0.0819
SE(3) Transformer (Fuchs et al., 2020b) 0.0244
TFN (Thomas et al., 2018) 0.0155
GNN (Gilmer et al., 2017a) 0.0107
Radial Field (Köhler et al., 2019) 0.0104
EGNN (Satorras et al., 2021) 0.0071
FA-GNN (Puny et al., 2022) 0.0057

LC-GNN 0.0043 ± 0.0001
LC-GNN-O(3) 0.0045 ± 0.0001
LC-GNN (frozen) 0.0085 ± 0.0002

around 20 times fewer parameters. This allows us to test the hypothesis
again that only a simple canonicalization function is necessary to achieve
good performance.

Training details. Using the Adam optimizer, we train on mean square
error (MSE) loss between predicted and ground truth. We train for 10.000
epochs and use early stopping. We use weight decay 10−8 and dropout in the
canonicalization function with p = 0.5.

Results Table 4.4 shows that we obtain state-of-the-art results. The im-
provement with respect to Frame Averaging is significant, showing that learn-
ing the canonicalization provides an important advantage. Our approach also
does better than all the intrinsically equivariant (or viewpoint-independent)
baselines both in accuracy and efficiency. This shows that canonicalization
can be used to obtain equivariant models with high generalization abilities
without sophisticated architectural choices.

Ablation study We also test variants of the model. First, we test on a
variant of the model where the canonicalization is only learned for the O (3)
part of the transformation and where the translation part is given by the
centroid. Since, for this system, all the masses are identical, this is the same
as the center of mass of the system. The result is reported in Table 4.4 as
LC-GNN-O(3). We obtain only marginally worse performance compared to
the fully trained canonicalization function. This shows that, in this setting,
the centroid provides an already suitable canonicalization function, which is

53

expected given the physical soundness of choosing the center of mass as the
origin of the reference frame. Since the learned translation canonicalization
performs on par with this physically motivated canonicalization, this also
validates the method.

The comparison with Frame Averaging is also insightful. PCA-based
Frame Averaging can also be motivated from a physical point of view since
this method is equivalent to identifying the principal axes using the tensor
of inertia. It is, therefore, a physical heuristic for O (3) canonicalization. By
contrast with the translation canonicalization with the centroid, for orthogonal
transformations learning, the canonicalization performs significantly better.

Second, we compare with a version of the model where the weights of the
canonicalization function are frozen at initialization. This canonicalization
still provides E(n)-equivariance and, as expected, provides a significant im-
provement of more than 20% with respect to the GNN prediction function
alone. However, the learned canonicalization function provides a close to 50%
improvement in performance compared to this fixed canonicalization.

4.3.3 Point cloud classification and segmentation
We use the ModelNet40 (Wu et al., 2015) and ShapeNet (Chang et al., 2015)
datasets for experiments on point clouds. The ModelNet40 dataset consists
of 40 classes of 3D models, with a total of 12,311 models. 9,843 models
were used for training, and the remaining models were used for testing in the
classification task. The ShapeNet dataset was used for part segmentation with
the ShapeNet-part subset, which includes 16 categories of objects and more
than 30,000 models. In the classification and segmentation task, the train/test
rotation setup adhered to the conventions established by (Esteves et al., 2018a)
and adopted by (Deng et al., 2021). Three settings were implemented: z/z,
z/SO(3), and SO(3)/SO(3). The notation z denotes data augmentation with
rotations around the z-axis during training, while SO(3) represents arbitrary
rotations. The notation x/y denotes that transformation x is applied during
training and transformation y is applied during testing.

We design our Canonicalization Network using layers from Vector Neurons
(Deng et al., 2021), where the final output contains three 3D vectors that are
obtained by pooling over the entire point cloud. We then orthonormalize the
three vectors using the Gram-Schmidt orthonormalization process to define a
3D ortho-normal coordinate frame or a rotation matrix. We canonicalize the
point cloud by acting on it using this rotation matrix. We use a two-layered
Vector Neuron network followed by global pooling, which we call LC(NL). To

54

Table 4.5: Test classification accuracy of different point cloud models on the ModelNet40
dataset (Wu et al., 2015) in three train/test scenarios. This table is borrowed from (Deng
et al., 2021). z here stands for aligned data augmented by random rotations around the
vertical axis, and SO(3) indicates data augmented by random 3D rotations.

Method z/z z/SO(3) SO(3)/SO(3)

Point / mesh inputs

PointNet (Qi et al., 2017a) 85.9 19.6 74.7
DGCNN (Wang et al., 2019b) 90.3 33.8 88.6
VN-PointNet (Deng et al., 2021) 77.5 77.5 77.2
VN-DGCNN (Deng et al., 2021) 89.5 89.5 90.2

PCNN (Atzmon et al., 2018) 92.3 11.9 85.1
ShellNet (Zhang et al., 2019b) 93.1 19.9 87.8
PointNet++ (Qi et al., 2017b) 91.8 28.4 85.0
PointCNN (Li et al., 2018) 92.5 41.2 84.5
Spherical-CNN (Esteves et al., 2018a) 88.9 76.7 86.9
a3S-CNN (Liu et al., 2018) 89.6 87.9 88.7

SFCNN (Rao et al., 2019) 91.4 84.8 90.1
TFN (Thomas et al., 2018) 88.5 85.3 87.6
RI-Conv (Zhang et al., 2019a) 86.5 86.4 86.4
SPHNet (Poulenard et al., 2019) 87.7 86.6 87.6
ClusterNet (Chen et al., 2019) 87.1 87.1 87.1
GC-Conv (Zhang et al., 2020b) 89.0 89.1 89.2
RI-Framework (Li et al., 2020) 89.4 89.4 89.3

Ours

LC(frozen)-PointNet 78.9 ± 2.1 78.7 ± 2.2 78.4 ± 2.5
LC(L)-PointNet 79.8 ± 1.4 79.6 ± 1.3 79.6 ± 1.4
LC(NL)-PointNet 79.9 ± 1.3 79.6 ± 1.3 79.7 ± 1.3
LC(frozen)-DGCNN 88.3 ± 2.1 88.3 ± 2.1 88.3 ± 2.1
LC(L)-DGCNN 88.9 ± 1.8 88.6 ± 1.9 88.6 ± 2.0
LC(NL)-DGCNN 88.7 ± 1.8 88.8 ± 1.9 90.0 ± 1.1

support our hypothesis that the canonicalization function can be inexpressive,
we use a single linear layer of Vector neuron followed by pooling and call
this model LC(L). Furthermore, to understand the significance of learning
canonicalization, we freeze the weights of the Canonicalization Network and
call this variant LC(frozen). We use PointNet and DGCNN (Wang et al.,
2019b) as the prediction networks in our experiments.

55

Training Details We use cross entropy loss and Stochastic Gradient De-
scent (SGD) optimizer to train the network for 200 epochs in all of our
pointcloud experiments. We use an initial learning rate of 0.1 and a cosine
annealing schedule with an end learning rate of 0.001.

Results Table 4.5 contains the results of the ShapeNet experiment, showing
the classification accuracy for different augmentation strategies during training
and evaluation: z/z, z/SO(3), and SO(3)/SO(3). Our method, which in-
cludes LC(frozen)-PointNet, LC(L)-PointNet, LC(NL)-PointNet, LC(frozen)-
DGCNN, LC(L)-DGCNN, and LC(NL)-DGCNN, demonstrates competitive
results across all rotation types. We achieve similar results in the ShapeNet
part segmentation task as presented in Table 4.6. In particular, we observe
three trends in our results. First, learning canonicalization slightly improves
the performance, except in the case where the test point clouds are already
aligned (z/z column of Table 4.5). Second, using shallow linear canonicaliza-
tion achieves good results. Third, the performance of the prediction network
bottlenecks the model’s performance. This verifies our hypothesis that decou-
pling the equivariance using a simple canonicalization network results in a
better and more expressive non-equivariant prediction network to improve
the performance of the task while still being equivariant. In Table 4.7, we
also show that the inference time of our algorithm is dominated by the predic-
tion network’s inference time. The overhead of canonicalization is negligible,
which makes our method faster than existing methods that modify the entire
architecture like Vector Neurons (Deng et al., 2021).

4.4 Related Works
Methods based on heuristics to standardize inputs have been around for a long
time (Yüceer & Oflazer, 1993; Lowe, 2004). However, these approaches require
significant hand-engineering and are difficult to generalize. An important
early work is the Spatial Transformer Network (Jaderberg et al., 2015) which
learns input transformations to facilitate processing in a downstream vision
task. PointNet (Qi et al., 2017a) also proposed to learn an alignment network
to encourage invariance for point cloud analysis. However, these approaches
are closer to regularizers and provide no equivariance guarantees. The works
of (Esteves et al., 2018b; Tai et al., 2019) provided equivariant versions of the
Spatial Transformer using an approach based on canonical coordinates. One
limitation of this approach is that it does not exactly handle equivariance to
groups that are larger in dimension than the dimension of the data grid. Some

56

Table 4.6: ShapeNet part segmentation results. Overall average category mean IoU
over 16 categories in two train/test scenarios are reported. z here stands for aligned
data augmented by random rotations around the vertical axis, and SO(3) indicates data
augmented by random 3D rotations

Methods z/SO(3) SO(3)/SO(3)

Point / mesh inputs

PointNet (Qi et al., 2017a) 38.0 62.3
DGCNN (Wang et al., 2019b) 49.3 78.6
VN-PointNet(Deng et al., 2021) 72.4 72.8
VN-DGCNN(Deng et al., 2021) 81.4 81.4
PointCNN (Li et al., 2018) 34.7 71.4
PointNet++ (Qi et al., 2017b) 48.3 76.7
ShellNet (Zhang et al., 2019b) 47.2 77.1
RI-Conv (Zhang et al., 2019a) 75.3 75.3
TFN (Thomas et al., 2018) 76.8 76.2
GC-Conv (Zhang et al., 2020b) 77.2 77.3
RI-Framework (Li et al., 2020) 79.2 79.4

Ours

LC(frozen)-PointNet 72.1 ± 0.8 72.3 ± 1.1
LC(L)-PointNet 73.4 ± 1.2 73.2 ± 0.9
LC(NL)-PointNet 73.5 ± 0.8 73.6 ± 1.1
LC(frozen)-DGCNN 78.1 ± 1.2 78.2 ± 1.2
LC(L)-DGCNN 78.5 ± 1.1 78.3 ± 1.2
LC(NL)-DGCNN 78.4 ± 1.0 78.5 ± 0.9

Table 4.7: Inference time (in seconds) of the networks for ModelNet40 classification test
split in 1 A100 and 8 CPUs with a batch size of 32. Vanilla denotes no modification to the
base network, while Vector Neuron and Canonicalization denote that the base network is
redesigned/enhanced with them to be equivariant.

Base Network Vanilla Vector Neuron Canonicalization
PointNet 18s 30s 20s
DGCNN 23s 39s 25s

recent works have proposed using learned coordinate frames for point clouds
(Kofinas et al., 2021; Luo et al., 2022; Du et al., 2022). We provide theoretical
and experimental evidence that the neural networks for canonicalization can
be made much shallower and simpler without affecting performance. (Bloem-
Reddy & Teh, 2020), introduce the concept of representative equivariant,
which is similar to what we implement in this work. Finally, other recent

57

works (Winter et al., 2022; Vadgama et al., 2022) have proposed to use
canonicalization in an autoencoding setup.

4.5 Discussion
In this chapter, we propose using a learned canonicalization function to obtain
equivariant machine-learning models. These canonicalization functions can
conveniently be plugged into existing architectures, resulting in highly expres-
sive models. We have described general approaches to obtain canonicalization
functions and specific implementation strategies for the Euclidean group (for
images and point clouds) and the symmetric group.

We performed experimental studies in the image, dynamical systems and
point cloud domains to test our hypotheses. First, we show that our approach
achieves comparable or better performance than baselines on invariant tasks.
Importantly, learning the canonical network is a better approach than using
a fixed mapping, either a frozen neural network or a heuristic approach. This
could be due to a combination of two factors. First, the learned canonical-
izations have some consistency and help the prediction network perform the
task. This is shown explicitly for our results in the image domain. Second,
the process of learning the canonicalization induces an implicit augmentation
of the data. This should help the prediction function generalize better and be
more robust to potential failings of the canonicalization function. The method
therefore combines some of the advantages of data augmentation with exact
equivariance which is discussed in details in the next chapter. Our results
also show that the canonicalization function can be realized with a relatively
shallower equivariant network without hindering performance. Finally, we
show that this approach reduces inference time and is more suitable for bigger
groups than G-CNNs on images.

Limitations and Future work One limitation of our method is that there
are no guarantees that the canonicalization function is smooth. This may be
detrimental to generalization as small changes in the input could lead to large
variations in the input to the prediction function. Another limitation could
arise in domains in which semantic content is lacking to identify a meaningful
canonicalization, for example, some types of astronomical images or biological
images.

Multiple extensions of this framework are possible. Future work could
include experimentation on canonicalization for the symmetric group. Other
ways to build canonicalization functions could also be investigated, such as

58

using steerable networks for images. The function would output an orientation
fibre that transforms by the irreducible representation of the special orthogonal
group. Understanding how design choices for canonicalization functions (for
example, the subgroup K) affect downstream performance could also be a
fruitful research direction. Finally, making large pretrained architectures
equivariant using this framework could be an exciting extension which we
explore in the next chapter.

59

5
Equivariant Adaptation of Large

Pretrained Models

In the previous chapter, we introduced a new technique to learn equivariant
functions using canonicalization. One main benefit of our method is that
it allows us to use any architecture to make task predictions once the in-
put is canonicalized. This brings us to the question: can we plug in any
existing powerful pretrained prediction neural network into this equivariance
formulation?

Recent research has shown that scaling models, both in terms of the number
of parameters and the amount of training data, systematically improve their
performance (Kirillov et al., 2023; Tan & Le, 2019; Chen et al., 2020d; Brown
et al., 2020a; Radford et al., 2021; Zhai et al., 2022; Xie et al., 2023). Pre-
training on massive datasets has emerged as a practical method to harness
this advantage. Several large models are now publicly available, and fine-
tuning them for specific applications has proven to be successful across various
domains. However, such foundation models (Bommasani et al., 2021) are
typically not equivariant to most transformations of the input data except
translations, as current methods to achieve this are non-trivial to adapt to
existing architectures and remain computationally expensive.

60

Ground Truth Mask

Prediction from SAM

Prediction from our
equivariant SAM

Canonicalization cost: parameters = +0.3% ; inference time: +7.3%Δ Δ

Figure 5.1: Predicted masks from the Segment Anything Model (SAM) (Kirillov et al.,
2023), showcasing both the original model and our proposed equivariant adaptation for
90◦ counter-clockwise rotated input images taken from the COCO 2017 dataset (Lin et al.,
2014). Our method makes SAM equivariant to the group of 90◦ rotations while only
requiring 0.3% extra parameters and modestly increasing the inference time by 7.3%.

In this chapter, which is taken from (Mondal et al., 2024), we show
that it is possible to bridge the gap between foundation models and the
systematic generalization offered by equivariance through the concept of a
learned canonicalization function from the previous chapter. However, a naive
application of the canonicalization idea fails in practice. This is because the
canonicalization network’s choice of canonical form can result in a change
of distribution in the input of the pretrained prediction network – that is,
canonicalization can be uninformed about the preference of the prediction
network, undermining its performance.

As outlined in Figure 5.4, we resolve this misalignment by matching the
distribution of predicted canonical forms with a prior distribution of orienta-
tions in the pertaining dataset. We empirically demonstrate that imposing
this prior is essential for the equivariant adaptation of pretrained models
across different domains and datasets. Our approach offers a practical solution
for obtaining large-scale equivariant models by providing an independent mod-
ule that can be integrated into existing large pretrained foundation models,
making them equivariant to a wide range of transformations like rotations.

61

5.1 Deeper Dive Into Canonicalization
The flexibility of the equivariance with canonicalization approach enables
the conversion of any existing large pretrained Deep Neural Network (DNN)
into an equivariant model with respect to certain known transformations. To
achieve this, the pretrained DNN can be utilized as the prediction network
in the formulation provided by Eq. (4.2). Subsequently, a canonicalization
function can be designed to produce the elements of the known group of the
transformation while maintaining equivariance with respect to this group.

One could learn the canonicalization function while optionally finetuning
the prediction function using the same task objective – in our experiments,
we consider both the zero-shot and fine-tuning setup.

The performance of the model requires the alignment of these two networks.
For example, if the canonicalization network produces upside-down natural
images, compared to those that the pretrained network is expecting, the
overall performance is significantly degraded. In addition to alignment, there
is an augmentation effect that further muddies the water: during its training,
the canonicalization network performs data augmentation. As we see shortly,
one needs to consider both alignment and augmentation effects when analyzing
the performance of this type of equivariant network.

When both networks are trained together from scratch, the alignment is a
non-issue, and (unwanted) augmentation can degrade or improve performance,
depending on the extent of symmetry in the dataset. However, when dealing
with pretrained prediction networks one needs to also consider the alignment
effect. One could then think of freezing the pretrained prediction network,
therefore avoiding unwanted augmentation, and backpropagating the task loss
through it to align the canonicalization network. However, this can become
prohibitively expensive for large pretrained models, such as segment anything
(SAM) considered in this work. We propose an alternative, where we directly
regularize the canonicalization network to produce canonical forms consistent
with the training data, which in turn aligns with the prediction network.

5.1.1 Learning Canonicalization, Augmentation and
Alignment

When learning the canonicalization function during training, the process
implicitly performs dynamic augmentation of the prediction network. Consider
a model designed to be equivariant to a certain group of transformations G
by canonicalization. At the start of training, the randomly initialized weights

62

of the canonicalization function will output random canonical orientations
for each data point. This has a similar effect to data augmentation using the
group G for the prediction network. As training progresses, the canonical
orientations for similar-looking images begin to converge, as demonstrated in
Figure 5.2, causing the augmentation effect to diminish. Thus, in addition
to guaranteeing equivariance, this formulation provides a free augmentation
effect to the prediction network during initial training stage.

Figure 5.2: Visualization of the diminishing augmentation effect introduced by learning
canonicalization (previous chapter) during training for rotated MNIST dataset. In this
visualization, the leftmost image represents the original training images. Moving towards
the center, we present the canonicalized images at the beginning of the training process.
Finally, the rightmost image unveils the transformation of the canonized images after
training the model for 100 epochs.

However, there are two scenarios where the augmentation provided by
learning the canonicalization function can be detrimental:

First, in cases where the training only requires small transformations as
augmentations, providing all the transformations of a group G can actually
hurt the performance of the prediction network during the start of training
or fine-tuning. For example, in natural image datasets like CIFAR10, small
rotation augmentations (from −10 to +10 degrees) are beneficial, while a
canonicalization function would output any rotation from −180 to +180
degrees during the beginning phase of training. This can lead to unstable
training of the prediction network and hinder the model’s performance by
training on additional data that is far outside the distribution of the train
set. We show this in Table 5.1 by training a prediction network with different

63

Distribution of angles at the start of training Distribution of angles after training

Figure 5.3: Distribution of angles output from canonicalization function in C8 for Learned
Canonicalization (previous chapter) for CIFAR10 (Krizhevsky & Hinton, 2009) before
and after training. We use indices on the x-axis instead of angle values to represent the
corresponding multiple of 45◦. Frequency denotes the number of images mapped to a
particular multiple of 45◦.

rotation augmentations, including the one due to learned canonicalization on
both CIFAR datasets. Furthermore, we also observe that this effect is more
pronounced when the prediction network is trained from scratch, and the
dataset is more complicated with a larger number of classes. This effect can
be understood as an example of the variance-invariance tradeoff introduced
by (Chen et al., 2020a). Since, the test distribution is not perfectly symmetric
under rotations, training with arbitrary augmentations biases the prediction
function.

Second, we notice that relying solely on the task loss objective is not
sufficient for the canonicalization function to learn the correct orientation.
This could be due to the small size of the finetuning dataset compared
to the pretraining dataset. We see experimentally that this leads to the
canonicalization function outputting inconsistent canonical orientations during
inference, impacting the prediction network’s performance. For instance,
in natural image datasets like CIFAR10 (non-augmented), we expect the
canonical orientation for every datapoint to be the original images after fine-

64

Table 5.1: Effect of augmentation on the Prediction network. Top-1 classification accuracy
and G-Averaged classification accuracy for CIFAR10 and CIFAR100 (Krizhevsky & Hinton,
2009). C8-Avg Acc refers to the top-1 accuracy on the augmented test set obtained using
the group G = C8, with each element of G applied on the original test set.

Dataset → CIFAR10 CIFAR100

Pred. Network ↓ Rot Aug Acc C8-Avg Acc Acc C8-Avg Acc

ResNet50
−10 to +10 deg 90.96 ± 0.41 44.87 ± 0.60 74.83 ± 0.15 37.14 ± 0.42
−180 to +180 deg 84.60 ± 1.83 81.04 ± 1.86 61.07 ± 0.27 59.42 ± 0.70

LC 83.11 ± 0.35 82.89 ± 0.41 59.84 ± 0.67 59.45 ± 0.49

ResNet50
(pretrained)

−10 to +10 deg 96.97 ± 0.01 57.77 ± 0.25 85.84 ± 0.10 44.86 ± 0.12
−180 to +180 deg 94.91 ± 0.07 90.11 ± 0.19 80.21 ± 0.09 74.12 ± 0.05

LC 93.29 ± 0.01 92.96 ± 0.09 78.50 ± 0.15 77.52 ± 0.07

𝒟

e

SO(2)

e

SO(2)Distribution of image
orientations in dataset

ρg̃−1 . II

Predicted image
orientations distribution

g

(argmax)

Prior Regularisation
(Minimising KL)

Training

Ir = ρg . I

e

SO(2)

ρg−1 . Ir

g̃

Canonicalization function

Inference

⇒

Figure 5.4: Training and inference with our proposed regularized canonicalization
method. The canonicalization function outputs a distribution over image transformations
and samples from that is used to canonicalize the input image. Additionally, during training,
this predicted distribution is regularized to match the transformations seen in the dataset.

tuning. 1 However, from Figure 5.3, we can see that the canonical orientations
for the test set are distributed uniformly from −180 to +180 degrees even
after training until convergence of the task objective. As a result, during
inference, the prediction network will view images with different orientations
and underperform. This issue arises from the fact that the prediction networks
are not inherently robust to these transformations.

65

5.1.2 Canonicalization Prior
As we have seen, the canonicalization network may induce a shift in orien-
tations away from those present in the training datasets for the prediction
network. To encourage the canonicalization function to align inputs in an
orientation that will help the prediction network, we introduce a simple regu-
larizer we call canonicalization prior (CP). It is motivated by noticing that the
images or point clouds in the finetuning dataset combined with the pretrained
model provide useful information about the existing orientation bias in the
pretrained prediction model. In case of natural image datasets, we expect the
canonical orientations in the fine-tuning dataset like CIFAR10 to be similar
to those of the pretraining dataset like ImageNet-1k. We, therefore, take as
prior that the canonicalization should align inputs as closely as possible to
their original orientation in the finetuning dataset.

We derive the regularizer by taking a probabilistic point of view. The
canonicalization function maps each data point to a distribution over the
group of transformations, denoted as G. Let Pc(x) denote the distribution
induced by the canonicalization function over G for a given data point x. We
assume the existence of a canonicalization prior associated with the dataset
D that has a distribution PD over G. To enforce the canonicalization prior,
we seek to minimize the Kullback-Leibler (KL) divergence between PD and
Pc(x) over the entire dataset D that is Lprior = Ex∼D

[
DKL(PD ∥ Pc(x))

]
.

We assume that the canonicalization function c estimates the parameters
of a distribution over rotations with probability density function p (R | c (x)).
We denote the probability density function of the prior to be q (R). Since the
prior distribution is kept constant, minimizing the KL divergence is equivalent
to minimizing the cross-entropy, and the prior loss simplifies to:

Lprior = −Ex∼D ER∼q [log p (R | c (x))] (5.1)

Hereafter, we derive the regularization for the discrete and continuous
cases separately.

Discrete Rotations

We first consider the group of 2D discrete rotations, the cyclic group Cn, which
can be seen as a discrete approximation to the full rotation group SO(2). In
this case, we consider a categorical distribution over group elements, with

1As pretrained networks are trained on ImageNet which consists of upright natural
images.

66

the prior distribution having a probability mass of 1 for the identity element.
Then pD(R) = δR,I, where δR,I is the Kronecker delta function and the
cross entropy in Eq. (5.1) becomes − log pc(x)(I). Hence, the loss becomes
Lprior = −Ex∼D log pc(x)(I). In other words, the regularization loss is simply
the negative logarithm of the probability assigned by the canonicalization
function to the identity element I of the group.

Practical Implementation For images, similar to the previous chapter,
the canonicalization network needs to output logits corresponding to every
group element in the discrete cyclic group Cn. This can be achieved by
using a Group Convolutional Network (Cohen & Welling, 2016c) or an E(2)-
Steerable Network (Weiler & Cesa, 2019c) that produces outputs using regular
representation. To design the canonicalization function, we take a spatial
average and get logits corresponding to every element in the group along
the fibre dimension. This is similar to the approach used in the previous
chapter. Now, we can get a discrete distribution over the group elements by
taking a softmax and minimizing the prior loss along with the task objective.
During training, to ensure consistency with the implementation in the previous
chapter for fair comparisons across all experiments, we utilize the argmax
operation instead of sampling from this distribution using Gumbel Softmax
(Jang et al., 2017) and employ the straight-through gradient trick (Bengio
et al., 2013b). All our image-based experiments use this discrete rotation
model.

Continuous rotations

When considering canonicalization with continuous rotations, it is natural
to use the matrix Fisher distribution introduced by (Downs, 1972). It is the
analogue of the Gaussian distribution on the SO(n) manifold and is defined
as

p (R | F) = 1

n (F)
exp

(
Tr
[
FTR

])
(5.2)

where F ∈ Rn×n is the parameter of the distribution and n (F) is a normaliza-
tion constant. Interpretation of the parameter F and useful properties of the
distribution are provided in (Khamsi & Kirk, 2011; Lee, 2018; Mohlin et al.,
2020). In particular, considering the proper singular value decomposition
F = USVT , we find that R̂ ≡ UVT is the mode of the distribution and
the singular values S can be interpreted as concentration parameters in the

67

different axes. We therefore set S = sI to obtain the isotropic version of the
distribution,

p
(
R | R̂, s

)
=

1

n (s)
exp

(
sTr

[
R̂TR

])
(5.3)

where the normalization constant only depends on s (Theorem 2.1 of (Lee,
2018)). Note that on SO (2), this becomes the Von-Mises distribution as
expected.

We introduce the following result, which will allow us to derive the
regularization.

Proposition 5.1.1. Let p and q be matrix Fisher distributions of R

p
(
R | R̂p, sp

)
=

1

n (sp)
exp

(
spTr

[
R̂T
pR
])
,

q
(
R | R̂q, sq

)
=

1

n (sq)
exp

(
sq Tr

[
R̂T
qR
])
.

The cross-entropy is given by

ER∼q

[
log p

(
R | R̂p, sp

)]
= N (sq) spTr

(
R̂T
p R̂q

)
+ log c (sp) (5.4)

where N (sq) only depends on sq.

Proof. The cross-entropy is given by

ER∼q

[
log p

(
R | R̂p, sp

)]
=

∫
SO(n)

q
(
R | R̂q, sq

)
log p

(
R | R̂p, sp

)
dR, (5.5)

where dR is the invariant Haar measure on SO(n). Here, we assume that
it is scaled such that

∫
SO(n)

dR = 1.
We obtain

ER∼q

[
log p

(
R | R̂p, sp

)]
=

∫
SO(n)

q
(
R | R̂q, sq

)(
spTr

[
R̂T
pR
]
− log c (sp)

)
dR,

ER∼q

[
log p

(
R | R̂p, sp

)]
= spTr

(
R̂T
p ER∼q [R]

)
− log c (sp) . (5.6)

68

From Theorem 2.2 and Lemma 2.2 of (Lee, 2018), we have

ER∼q [R] =
d log c (sq)

dsq
R̂q. (5.7)

Therefore, we find

ER∼q

[
log p

(
R | R̂p, sp

)]
=
d log c (sq)

dsq
spR̂q − log c (sp) , (5.8)

which completes the proof.

Setting the location parameters of the estimated and prior distributions
as Rc(x) and R̂q = I respectively, we find that the canonicalization prior
Eq. (5.1) is given by

Lprior = −λTr
(
Rc(x)

)
=
λ

2

∥∥Rc(x) − I
∥∥
F

(5.9)

where we have eliminated terms that do not depend on Rc(x) and λ =
N (sq) sp. Following intuition, the strength of the regularization is determined
by the concentrations of the distributions around their mode.

Practical Implementation For the image domain, the canonicalization
network needs to output rotation matrices Rc(x) ∈ SO(2) that equivariantly
transforms with the input image. This can be achieved by using a E(2)-
Steerable Network (Weiler & Cesa, 2019c) that outputs two vector fields.
To design the canonicalization function we can take a spatial average over
both vector fields and Gram-Schmidt orthonormalize the vectors to get a 2D
rotation matrix. While this sounds promising in theory, in practice we found
it empirically difficult to optimize using the loss to enforce canonicalization
prior. We believe this warrants further investigation and presents a potential
novel research direction to explore. However, in the domain of point clouds,
we discovered that combining the implementation from the previous chapter,
which outputs 3D rotation matrices or elements of SO(3), with the regular-
ization loss to enforce the canonicalization prior leads to remarkably effective
results. This approach is demonstrated in our model for rotation-robust point
cloud classification and part segmentation, leveraging pretrained PointNet
(Qi et al., 2017a) and DGCNN (Wang et al., 2019a) architectures (see Section
5.3).

Our code is available at https://github.com/arnab39/equiadapt

69

https://github.com/arnab39/equiadapt

Table 5.2: Performance comparison of large pretrained models finetuned on different
vision datasets. Both classification accuracy and G-averaged classification accuracies are
reported. Acc refers to the accuracy on the original test set, and C8-Avg Acc refers to the
accuracy on the augmented test set obtained using the group G = C8. C8-Aug. refers to
fine-tuning the pre-trained model with rotation augmentations restricted to C8.

Pretrained Prediction Network → ResNet50 ViT

Datasets ↓ Model Acc C8-Avg Acc Acc C8-Avg Acc

CIFAR10

Vanilla 96.97 ± 0.01 57.77 ± 0.25 98.13 ± 0.04 63.59 ± 0.48
Rot Aug 94.91 ± 0.07 90.11 ± 0.19 96.26 ± 0.15 93.67 ± 0.39

LC 93.29 ± 0.01 92.96 ± 0.09 95.00 ± 0.01 94.80 ± 0.02
C8-Aug. 95.76 ± 0.07 94.36 ± 0.09 96.36 ± 0.02 94.17 ± 0.08

PRLC (ours) 96.19 ± 0.01 95.31 ± 0.17 96.14 ± 0.14 95.08 ± 0.10

CIFAR100

Vanilla 85.84 ± 0.10 44.86 ± 0.12 87.91 ± 0.28 55.87 ± 0.14
Rot Aug 80.21 ± 0.09 74.12 ± 0.05 82.59 ± 0.44 78.39 ± 0.89

LC 78.50 ± 0.15 77.52 ± 0.07 80.86 ± 0.17 80.48 ± 0.20
C8-Aug. 83.00 ± 0.09 79.72 ± 0.10 83.45 ± 0.09 80.08 ± 0.38

PRLC (ours) 83.44 ± 0.02 82.09 ± 0.09 84.27 ± 0.10 83.61 ± 0.01

STL10

Vanilla 98.30 ± 0.01 73.87 ± 1.43 98.31 ± 0.09 76.66 ± 0.93
Rot Aug 98.08 ± 0.06 94.97 ± 0.08 97.85 ± 0.17 94.07 ± 0.11

LC 95.30 ± 0.19 93.92 ± 0.10 95.11 ± 0.01 94.67 ± 0.02
C8-Aug. 98.31 ± 0.01 96.31 ± 0.13 97.83 ± 0.08 94.45 ± 0.35

PRLC (ours) 97.01 ± 0.01 96.37 ± 0.12 96.15 ± 0.05 95.73 ± 0.16

5.2 Image Experiments
In this section, we present experimental results on images to evaluate our
method of achieving equivariance with minimal modifications to pretrained
networks. The key benefit of our approach is showcased by demonstrating its
robustness when evaluating out-of-distribution data that arise from known
transformations applied to the test set. In addition to supervised learning,
we present preliminary experiments in Deep Reinforcement Learning (DRL)
to establish a connection with the concepts discussed in Chapter 3.

5.2.1 Classification
Experiment Setup. We use ResNet50 (He et al., 2016) and ViT-Base
(Dosovitskiy et al., 2021), which are pretrained on the ImageNet-1K dataset
(Deng et al., 2009) for our image experiments. These are widely used for image
classification tasks, and their pretrained checkpoints are publicly available 2

2https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html

70

https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html

3. We finetune these models on several benchmark natural image classifica-
tion datasets, including CIFAR10 (Krizhevsky & Hinton, 2009), CIFAR100
(Krizhevsky & Hinton, 2009), and STL10 (Coates et al., 2011). Moreover,
we incorporate four different strategies to finetune the pretrained models,
namely: 1) Vanilla, 2) Rotation Augmentation, 3) Learn Canonicalization,
and 4) Prior-Regularized Learned Canonicalization. For the canonicalization
function, we use a C8-equivariant convolutional network. We jointly train
the canonicalization function and fine-tune the pretrained image classification
networks. Our total loss is given by Ltotal = Lfine−tune + β · Lprior, where
Lprior is defined in Eq. 5.1, Lfine−tune refers to the cross-entropy loss for
classification, and β is a hyperparameter which is set to 100.

The Vanilla model refers to fine-tuning the pretrained checkpoints using
data augmentations such as horizontal flips and small angle rotations, while
the Rotation Augmentation model covers angles ranging from −180 to +180
degrees. Although Rotation Augmentation model is not equivariant, our goal
was to establish a useful baseline to measure the gain in generalization of
our proposed model to the out-of-distribution test dataset resulting from
rotating the images. Further, we also report results on a discretized version
of Rotation Augmentation, mentioned as C8-Aug. in Table 5.2, where the
fine-tuning dataset is augmented with the application of group elements in
C8. We employ the Learned Canonicalization method from the previous
chapter, where the canonical orientation is learned with the task signal only,
which in our experiment is the classification. Finally, our proposed Prior-
Regularized Learned Canonicalization approach adds a prior regularization
loss that tries to map all images in the original training dataset to the identity
group element e. We refer to the final two equivariant techniques as LC and
Prior-Regularized LC.

Evaluation Protocol. In order to test the robustness of the models on
rotations, we introduce G-averaged test set that refers to an expanded dataset
obtained by applying all group elements to each image, resulting in a test
dataset of size |G| times the original test set. In this section, we consider
G as C8 (cyclic group with 8 rotations), thus |G| = 8. We report the top-1
classification accuracy achieved on the original as well as this augmented test
set (referred to as C8-Average Accuracy) to evaluate both in distribution and
out-of-distribution performance of the models.

3https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html

71

https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html

Results. We report the results of finetuning ResNet50 and ViT on CIFAR10,
CIFAR100, and STL10 with various strategies in Table 5.2. As anticipated,
we found that large pretrained networks for images are not robust to rotation
transformations, as indicated by the large drop in performance from the accu-
racy to its C8-averaged counterpart for both ResNet50 and ViT. Nevertheless,
we observe that ViT is more robust to rotations compared to ResNet50, which
has also been observed by (Gruver et al., 2022). We notice that augmenting
with a full range of rotation angles during training improves the C8-Average
Accuracy as demonstrated by our Rotation Augmentation baseline. However,
it hurts the accuracy of the prediction network in the original test set and
does not guarantee equivariance. Augmenting with necessary rotations in
C8-Augmentation does not ensure equivariance to C8 but retains performance
on the original test set and reduces the gap between original and C8-averaged
accuracies.

LC guarantees equivariance, which can be seen from the minor difference
between the accuracies of the original and augmented test sets. Nevertheless,
in every dataset, we can observe a significant drop in accuracy for the original
test set. We extensively discussed this issue in Section 5.1.1. However,
with our Prior-Regularized LC method, we can reduce the gap between the
accuracy on the original test set while still being equivariant to rotations. This
demonstrates that this prior regularization on LC is a promising direction
to improve the performance of large-pretrained models while guaranteeing
robustness to out-of-distribution samples resulting from transformations like
rotation.

Ideally, the accuracy of the original test set should be nearly identical
for both the Vanilla setup and our Prior-Regularized LC method. However,
we observed a slight difference between their corresponding accuracies. This
disparity arises from the fact that the canonicalization model is unable to map
all data points (images) perfectly to the identity element e, supported by our
observations that the regularization loss for prior matching does not diminish
to zero. We hypothesize that this stems from the intentional limitation in
the expressivity of the canonicalization function, which is done on purpose in
the previous chapter to avoid adding excessive computational overhead to the
overall architecture. Finally, we note that due to rotation artifacts, a small
difference between C8-Average Accuracy and Accuracy on the original test
set is unavoidable.

72

5.2.2 Instance Segmentation
Experiment Setup. We use MaskRCNN (He et al., 2017) and Segment
Anything Model (SAM) (Kirillov et al., 2023), which are pretrained on
Microsoft COCO (Lin et al., 2014) and SA-1B (Kirillov et al., 2023) datasets
respectively. MaskRCNN is widely used for instance segmentation tasks,
while SAM is a recently proposed foundational model that can leverage
prompts (bounding boxes and key points) for instance segmentation, and
their pretrained checkpoints are publicly available 4 5. In our experiments,
we evaluate these models on COCO 2017 dataset, i.e., report zero-shot
performance on validation (val) set and use ground truth bounding boxes as
prompts for SAM. For the canonicalization function, we use a C4-equivariant
WideResNet architecture. The details of the architecture are available in
(Mondal et al., 2024). As MaskRCNN and SAM are already trained for the
instance segmentation task, we only train the canonicalization function using
the prior loss Lprior in Eq. 5.1 to make them equivariant to C4 group.

Evaluation Protocol. To test the generalization capabilities of these
models, we introduce and utilize the C4-averaged val set (C4 refers to the
cyclic group with 4 rotations for reducing the complexities with transforming
ground truth boxes and masks) along with the original val set. We report
the mask-mAP score for mask prediction on both these datasets, denoted
respectively as mAP and C4-Avg mAP in Table 5.3.

Results. Owing to its pre-training on larger datasets and the use of bound-
ing boxes as prompts, SAM outperforms MaskRCNN in both mAP and
C4-Avg mAP scores. The difference between mAP and C4-Avg mAP scores
demonstrates that SAM is more robust than MaskRCNN in the case of these
transformations.

However, we observe that there is a difference between these two reported
numbers for both models. With our prior regularized LC framework, we can
achieve equivariance with any large pretrained model to the desired group
(here C4) while retaining the performance on the original val set. Further,
we analyze the relationship between the expressivity of the canonicalization
function and the downstream effect on mAP values on the original val set
in Table 5.3. We compare a C4-equivariant convolutional network (G-CNN)
with a C4-equivariant WideResNet (G-WRN) architecture. We observe that

4https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn
5https://github.com/facebookresearch/segment-anything

73

https://pytorch.org/vision/main/models/generated/torchvision.models.detection.maskrcnn_resnet50_fpn_v2.html
https://github.com/facebookresearch/segment-anything

although equivariance is guaranteed, a less expressive canonicalization function
leads to decreased performance in the original val set due to its inability to
map complex images to identity.

Table 5.3: Zero-shot performance comparison of large pretrained segmentation models
with and without trained canonicalization functions on COCO 2017 dataset (Lin et al.,
2014). Along with the number of parameters in canonicalization and prediction network,
we report mAP and C4-averaged mAP values. † indicates G-CNN and ‡ indicates a more
expressive G-WRN for canonicalization.

Pretrained Large Segmentation Network → MaskRCNN (46.4 M) SAM (641 M)

Datasets ↓ Model mAP C4-Avg mAP mAP C4-Avg mAP

COCO
Zero-shot (0 M) 45.57 27.67 62.34 58.78

Prior-Regularized LC† (0.2 M) 35.77 35.77 59.28 59.28
Prior-Regularized LC‡ (1.9 M) 44.51 44.50 62.13 62.13

5.2.3 Reinforcement Learning
Experiment Setup. We use a similar setup to that described in Section 3.4.
Along with the Vanilla Double Deep Q-Network (DDQN) and its equivariant
version, we implement a Prior Regularized Learned Canonicalization version
based on the pretrained Vanilla DDQN model. To train the canonicalizer
using the prior regularization loss, we generate data from 1000 episodes using
the pretrained Vanilla DDQN policy.

Evaluation Protocol. For our evaluation protocol, we employ the same
methodology outlined in Section 3.4. The results for different rotations of the
screen under the cyclic group C4 are reported in Table 5.4.

Transformation Vanilla DDQN Equivariant DDQN PRLC DDQN

e 129 ± 2.3 125 ± 4.5 126 ± 3.5
r 48.9 ± 2 99 ± 4.7 109 ± 6.3
r2 53 ± 3.5 104 ± 3.4 115 ± 5.1
r3 51 ± 1.9 98 ± 3.9 110 ± 4.6

Table 5.4: Average reward over 200 episodes of Pacman for 5 seeds reported with a
confidence level of 95% for different environment transformations. e is the original screen.

74

Results. Our findings demonstrate that the pretrained Vanilla Double Deep
Q-Network (DDQN) agent, when equipped with our prior regularized learned
canonicalization technique, successfully generalizes to various transformations
of the input screen. While these experiments are preliminary, they reveal a
promising avenue for enhancing the generalization capabilities of pretrained
Deep Reinforcement Learning (DRL) agents. Specifically, this approach opens
up the possibility of enabling any pretrained DRL agent to generalize across
transformations in environments with known group actions.

5.3 Point Cloud Experiments

Table 5.5: Classification accuracy of different pointcloud models on the ModelNet40
dataset (Wu et al., 2015) in different train/test scenarios and ShapeNet (Chang et al.,
2015) Part segmentation mean IoUs over 16 categories in different train/test scenarios.
x/y here stands for training with x augmentation and testing with y augmentation. z here
stands for aligned data augmented by random rotations around the vertical/z axis and
SO(3) indicates data augmented by random 3D rotations.

Task → Classification Part Segmentation

Dataset → ModelNet40 ShapeNet

Method ↓ z/z z/SO(3) SO(3)/SO(3) z/SO(3) SO(3)/SO(3)

PointNet 85.9 19.6 74.7 38.0 62.3
DGCNN 90.3 33.8 88.6 49.3 78.6

VN-PointNet 77.5 77.5 77.2 72.4 72.8
VN-DGCNN 89.5 89.5 90.2 81.4 81.4
LC-PointNet 79.9 ± 1.3 79.6 ± 1.3 79.7 ± 1.3 73.5 ± 0.8 73.6 ± 1.1
LC-DGCNN 88.7 ± 1.8 88.8 ± 1.9 90.0 ± 1.1 78.4 ± 1.0 78.5 ± 0.9

Ours (with pretrained PointNet and DGCNN for each task)

no-aug/z no-aug/SO(3) no-aug/SO(3)

PRLC-PointNet 84.1 ± 1.1 84.3 ± 1.2 82.6 ± 1.3
PRLC-DGCNN 90.2 ± 1.4 90.2 ± 1.3 84.3 ± 0.8

Datasets. For our experiments involving point clouds, we utilized the
ModelNet40 (Wu et al., 2015) and ShapeNet (Chang et al., 2015) datasets.
The ModelNet40 dataset comprises 40 classes of 3D models, with a total of
12,311 models. Among these, 9,843 models were allocated for training, while
the remaining models were reserved for testing in the classification task. In
the case of part segmentation, we employed the ShapeNet-part subset, which

75

encompasses 16 object categories and over 30,000 models. We only train the
canonicalization function using the prior loss Lprior in Eq. 5.9.

Evaluation protocol. To ensure consistency and facilitate comparisons, we
followed the established conventions set by (Esteves et al., 2018a) and adopted
by (Deng et al., 2021) for the train/test rotation setup in the classification
and segmentation tasks. The notation x/y indicates that transformation x
is applied during training, while transformation y is applied during testing.
Typically, three settings are employed: z/z, z/SO(3), and SO(3)/SO(3).
Here, z denotes data augmentation with rotations around the z-axis during
training, while SO(3) represents arbitrary rotations. However, since we
regularize the output of the canonicalization with the identity transformation,
we trained our canonicalization function and fine-tuned our pretrained model
without any rotation augmentation. During inference, we tested on both z
and SO(3) augmented test datasets.

Results. We present our results on Table 5.5. Notably, our method show-
cased superior performance in terms of robustness, outperforming existing
methods for point cloud tasks. Specifically, the inclusion of the prior loss has
led to a significant improvement in PointNet’s (Qi et al., 2017a) performance
compared to DGCNN (Wang et al., 2019a). This observation aligns with our
analysis in Section 5.1.1, where we highlight that training the prediction net-
work with large rotations can hinder its performance and serve as a bottleneck
for equivariance within the learnt canonicalization framework. The empirical
evidence, particularly in the SO(3)/SO(3) results of vanilla PointNet and
DGCNN, where we notice a more pronounced drop in PointNet’s performance,
supports this and strengthens our findings.

5.4 Discussion
Out-of-distribution generalization is desirable in machine learning, but achiev-
ing it has been challenging for state-of-the-art deep models, where an impor-
tant source of shift in distribution is due to application-specific transformations
of the data – from the change of colour palette, magnification and rotation in
images to change of volume or pitch in sound. A mechanism for making pre-
trained models robust to such changes can have a significant impact on their
adaptation to different domains. This paper takes the initial steps toward
this goal by removing barriers to making the model equivariant through a
lightweight canonicalization process. The proposed solution ensures that the
pretrained model receives in-distribution data, while canonicalization ensures

76

equivariance and, therefore, adaptability to a family of out-of-distribution
samples. Our extensive experimental results using different pretrained models,
datasets, and modalities gives insight into this subtle issue and demonstrate
the viability of our proposed solution.

Limitations and Possible Extensions An important limitation of our
approach is the dependency on an equivariant canonicalization network, which
imposes restrictions on the range of transformations to which we can adapt.
The optimization approach discussed in the previous chapter offers more
flexibility, as it replaces the equivariant network with the outcome of an
optimization process. However, this approach can raise efficiency concerns
for continuous groups, which merit further investigation. Another limitation
of the current exposition is the limited group of transformations explored
in experiments. In future, a comprehensive evaluation of this approach to
other groups of transformation can be a promising direction. Furthermore,
the experiments on pretrained DRL agents are preliminary, and a thorough
study of this technique for Reinforcement Learning is an interesting avenue
of future research.

The optimization challenges related to prior regularization for E(2)-
Steerable Networks (Weiler & Cesa, 2019b) also present an interesting direction
for future work. Addressing these challenges would allow us to incorporate
continuous rotations into our image framework, thereby expanding its capa-
bilities. Moreover, this observation emphasizes the necessity to delve into the
effect of expressivity of the canonicalization function, as it plays a crucial role
in determining the overall performance of our model.

Another promising future direction can be the exploration of more flexible
adaptation through canonicalization using examples from a target domain.
Such examples from a target domain can, in principle, replace the prior
knowledge of the transformation group assumed in equivariant networks,
thereby bridging the gap between equivariant deep learning and domain
adaptation.

77

Part III

Learning Structured
Representations

78

6
Equivariant Representations

using Loss Constraints on Lie
Groups

In contrast to the chapters in the previous part of the thesis, this chapter and
the subsequent chapters develop a novel perspective on learning representa-
tions that are structured using the symmetries and transformations in the
data. This chapter, which is mostly taken from (Mondal et al., 2022), shows
how to parameterize the latent embeddings of states and actions to make the
representations equivariant to continuous transformations of the environment
resulting from an agent’s action using loss constraints.

In particular, we integrate equivariance under the agent’s action and
equivariance under the symmetries of the environment into a single latent
variable model that is equivariant to an a priori unknown group of non-
linear transformations of state-action pairs; see Figs. 6.1 and 6.2. In contrast
to the traditional approach of using symmetric Markov Decision Processes
(MDPs), we model the larger group of state-action symmetries (separate from
reward symmetries). We evaluate this approach, which we call Equivariant
representations for RL (EqR), on the 26 games in the Atari 100K benchmark

79

T

T̄

T̄

τg κs
g τg

s

s̄ ā

a

,

, s′

s̄′

State transition

Tra
ns

itio
n S

ym
metr

y

 Group
equivariant

transition

Action
equivariant
transition

La
te

nt
 E

m
be

dd
in

g

s̃ , ã s̃′

h𝕊 h𝕊hs𝔸

Figure 6.1: This figure demonstrates the relationship between two types of equivariance
in latent variable modeling for an MDP with a symmetric transition function. Green arrows
(vertical plane) identify a diagram for transition models in an MDP homomorphism. A
model T̄ and state embedding function hS that are equivariant under an agent’s action
makes this diagram commute. Red arrows (horizontal plane) identify the commutativity
diagram for a symmetric transition function of an MDP in the latent space. Here the
state-action embedding ⟨s̃, ã⟩ is produced through the symmetry transformation of another
state-action embedding ⟨s̄, ā⟩.

(Kaiser et al., 2019b). Here we outperform other comparable methods using
reliable evaluation metrics (Agarwal et al., 2021). Our approach, however,
is not restricted to this domain. It is applicable in any setting where the
transformations that an agent undergoes can be expressed using matrix Lie
groups, including autonomous driving, navigation, and robotics.

6.1 Desiderata for Symmetry-Based Repre-
sentation in RL

Separating Transition and Reward Symmetries One important choice
is between using the symmetry group of the MDP (GM) versus the symmetry
group of state-transitions (GT), where GT is the group of transformations
of state-action pairs that lead to equivariant deterministic transitions, as
given by Equation 2.9. The former is a subgroup of the latter GM ≤ GT ,

80

i.e., the symmetries of a transition model contain the symmetries of the
MDP. In fact, it is easy to see that GM = GT ∩ GR, where GR is the group of
transformations of state-action pairs that preserve the one step-reward and
only satisfy Equation 2.8.

We observe that working with a larger symmetry group GT has two benefits.
First, it creates a stronger inductive bias for the model because many real-
world settings can involve a range of symmetries in transitions that are not
present in the reward. For example, an agent’s transition function in a 2D
space may be equivariant to the Euclidean group, while the reward may not
be invariant to the same group (e.g., the reward for arriving at a particular
location could break this symmetry). Second, the separate modeling of
transition symmetries facilitates transfer to new tasks where the reward is
changing.

Equivariance in Model-Free and Model-Based RL If the objective is
to carry out model-free RL, Eq. (2.11) motivates the need to learn action-
value functions or the policies that are invariant to symmetries of the MDP
(GM). For a deterministic policy, the invariance of Eq. (2.11) becomes an
equivariance constraint: g ·π(s) = π(g ·s). Since this essentially leads to model
minimization, van der Pol et al. (2020b); Mondal et al. (2020) use this idea
to improve sample efficiency when the group’s actions in the agent’s action
space are known permutations, which is explored in Chapter 3. However, if
our objective is to learn only a symmetry-based model of the environment
(i.e., transition and reward functions), Eq. (2.9) suggests that we need to
learn a GT -equivariant transition function.

Symmetries in a Latent Transition Model While it is possible to learn
the state transition model in the observation space that is equivariant to the
agent’s action, for high-dimensional inputs this could be quite challenging
since the model has to learn details of the environment that are irrelevant
to the RL agent. Using state and action embeddings enables learning of the
transition model in the latent space. Indeed the constraint on the model and
the embedding is that of the MDP homomorphism (Section 2.4.2). Working
in the latent space has an additional benefit when it comes to symmetries: we
can assume that the G action on the latent state-action pairs is linear through
ρ(G) despite having non-linear transformations in the observation space.

From the fact that symmetries of states GS ≤ G is a subgroup of the
state-action or transition symmetry, it follows that ρg ∈ ρ(G) can be divided
into two parts: 1) τg ∈ τ(GS) the group representation acting on the state

81

embedding, and; 2) κsg ∈ κ(G), the group representation for state-dependent
action embedding.1

At this point, we can combine the requirement for an MDP homomorphism
in Eq. (2.6), with that of the G-equivariant transition model, Eq. (2.9) of a
symmetric MDP. The result is the following two constraints in our symmetric
latent variable model (see Fig. 6.1): ∀s, a ∈ S ×A and g ∈ G

T̄ (hS(s), hA(s, a)) = hS(T (s, a)) (6.1)
τgT̄ (hS(s), hA(s, a)) = T̄

(
τghS(s), κ

s
ghA(s, a)

)
(6.2)

Matrix Embedding of States and Actions We now consider a design
choice which can significantly simplify the constraints discussed above, though
strictly speaking it is not required. We propose to use group representations for
our state, and state action embeddings hS : S → τ(GS) and hA : S×A → κ(G)
– that is we use matrices to represent both states and actions. This choice
assumes that a G action on state and state-action pairs is transitive, so that
each state and state-action pair can be mapped to a group member. To
emphasize this in our notation, we use κ(s) instead of hS(s) and similarly use
τ(s, a) instead of hA(s, a) for state, and state-dependent action embedding
respectively. This choice of embedding has several benefits: First, the learned
embeddings are automatically equivariant to symmetry transformations of
the state, and state-actions:

τ(g · s) = τgτ(s) and κ(g · ⟨s, a⟩) = κsgκ(s, a),

∀s, a ∈ S ×A, g ∈ G. (6.3)

This means that the symmetries of the state-action pairs are preserved and now
take a linear form in the latent space. While the embeddings are automatically
equivariant, they may be equivariant to irrelevant non-linear transformations
of the input. The world modeling constraint (Eq. (6.1)) ensures the relevance
of the non-linear transformations that are captured by the group equivariant
embeddings above. Moreover, this embedding enables matrix multiplication
for the transition model

T̄ (τ(s), κ(s, a)) = κ(s, a)τ(s), (6.4)

1This is because ρ(G) can be seen as a representation that is induced by the representation
τ(GS) of its subgroup: ρ = IndGGS

τ .

82

which simply transforms the state-embedding τ(s) through the linear group
action of state-dependent action encoding κ(s, a). Using this transition model,
the action equivariance constraint of Eq. (6.1), and G-equivariance constraint
of Eq. (6.2), simplify to:

τ(s′) = κ(s, a)τ(s) (6.5)
τgκ(s, a)τ(s) = κsgκ(s, a)τgτ(s) (6.6)

for any state transition triplet {s, a, s′}. In practice, our model seeks to satisfy
these two constraints via the direct minimization of appropriate loss functions,
as will be discussed in Section 6.2.

Figure 6.2: An illustration of typical symmetries in a pendulum, and the corresponding
transformations of the state and action for a group equivariant transition model: (a) shows
how reflection of the agent’s state results in a permutation of the action, denoted by
a−1. (b) shows how the rotation of the agent’s state results in invariance of the action
in the absence of gravity. The state transitions can be modeled as group actions (2D
rotations in this example), which our symmetry transformation-based transition model
can capture. Note that rotational symmetry can hold even when gravity is present. In
this case, symmetry transformations include rotations (and reflections) that preserve the
Hamiltonian. Such non-linear energy-preserving transformations of state-actions in the
pixel space can become linear in the embedding space.

Decomposition of the Latent Space The decomposition G = G1×. . .×GK
into a direct product of subgroups can disentangle the factors of variation in
the dataset (Higgins et al., 2018).2 This gives us a way to represent the latent
embedding space as a direct product of K factors, where each factor varies
independently by actions of a subgroup of G. Intuitively such a symmetry-
based disentanglement provides an effective inductive bias particularly when

2As noted by Caselles-Dupré et al. (2019), simply having a product structure in the
latent space does not guarantee disentanglement, and further constraints are required. In
this work, we do not impose any additional constraints for disentanglement.

83

there is modularity so that temporally coherent changes in the environment
are due to the change of a (sparse) subset of factors. In our case, this
constraint takes the form of block-diagonal matrices for state and action
embeddings. More precisely, we have a direct sum for state representation
and the state-dependent action representation:

τ(s) =
⊕
k

τk(s) and κ(s, a) =
⊕
k

κk(s, a)

where k ∈ {1, . . . , K} and g = (g1, . . . , gK). Accordingly, the representation of
the symmetry group G acting on the state embedding and the state-dependent
action embedding is decomposed as τg =

⊕
k τgk and κsg =

⊕
k κ

s
gk

. Combining
this block structure with the Lie parameterization of Section 2.2 we obtain

τθ(s) =
⊕
k

exp

(∑
i

βi,k,θ(s)E(i)

)
and

κϕ(τθ(s), a) =
⊕
k

exp

(∑
i

αi,k,ϕ(τθ(s), a)E(i)

)
(6.7)

where we use any standard neural network to implement the αϕ and βθ
functions that represent coefficients for the bases of the Lie algebra3. As we
can backpropagate through this function, the network parameters θ, ϕ can be
learned end to end. We refer the readers to Section 6.1.1 for more detail. The
choice of the subgroup depends on the symmetries of the RL environment, and
this choice only affects the set of bases {E(i)}i in Eq. (6.7). For example, in
Atari games, the screen often has multiple objects undergoing 2-D translations
and rotations, and one can use blocks of the 2-D Special Euclidean (SE(2))
group, that comprise translation and rotations of Euclidean space. For more
realistic 3D environments, such as those of interest in robotics, self-driving
cars and third-person games, one can use SE(3), which is the group of 3-
D translations and rotations. Also, in theory, we only need to specify a
group that “contains” the group of interest as a subgroup. For example, if
our state-actions only have 90◦ rotational symmetry, we may use a more
general group for the representation (e.g., SE(2)). The embedding function
can define a homomorphism into the relevant subgroup. For more realistic

3We denote both the neural networks which map to group representations and the
network parameters by lowercase Greek letters.

84

3D environments, such as those of interest in robotics, self-driving cars and
third-person games, one can use SE(3), which is the group of 3-D translations
and rotations. This should capture both the transformations of the objects
in the environment and changes in viewpoint due to the agent’s actions.

6.1.1 Implementing parameterization
We consider three types of subgroups: GL(n) - the set of all invertible linear
transformations, SE(n) - the set of all rotations and translations and T (n) -
the set of all translations. We provide a general method to parameterize each
of these, based on the type of group.

GL(n) As the matrix representation of GL(n) is the set of invertible matrices
which has a measure of 1 it is easy to parameterize it. We just generate n2

parameters using a network corresponding to each element of the matrix.
This gives an element from GL(n).

T (n) As T (n) just denotes translation in a n-dimensional space with group
action being addition, implementing it is straightforward. We generate n
parameters using a neural network and instead of using matrix multiplication
use addition for the group action. Note that we can also use a matrix
representation for T (n) but it is unnecessary and inefficient.

SE(n) Unlike GL(n) and T (n), parameterizing SE(n) is a bit tricky because
it involves parameterizing SO(n). We use a homogeneous co-ordinate based

representation of SE(n) =
{(

R t
0 1

)
, R ∈ SO(n) and t ∈ T (n)

}
. So we

need n parameters for the t and another D = n(n−1)
2

parameters for SO(n)
from the neural network. As explained in Section 6.1, we can use a Lie
parameterization to get the elements of SO(n) by R = exp

(∑D
d=1 βdE

(d)
)

where E(d) denote D bases of the space of skew symmetric matrices and the
βis are the parameters of the neural network. For example, in the case of

SO(2) we can use the basis E(1) =

(
0 1
−1 0

)
. Similarly, we can extend this

to SO(n) by using a basis given by D n× n matrices E(ij) ∀{1 ≤ i < j ≤ n}
whose only non-zero elements are E(ij)

i,j = −1 and E(ij)
j,i = 1.

Although Lie parameterization gives us a general recipe to output a repre-
sentation of simple connected Lie groups like SO(n), in our implementation
we use Euler parameterization because it runs faster in Pytorch. We provide
the code for both. Following (Quessard et al., 2020), we parameterize each

85

rotation matrix in SO(n) using the product of rotations on D orthogonal
planes in Rn: R =

∏n
i=1

∏
1≤i<j≤nR

ij . Here Rij ∈ Rn×n is the rotation matrix
in the i− j plane, and its non-zero elements besides the diagonal are the four
values on the i, j rows and columns, which comprise the 2D rotation matrix

that is Rij
i,j =

[
cos(θi,j) sin(θi,j)
− sin(θi,j) cos(θi,j)

]
. We have D parameters θi,j which we

can obtain from a neural network.
The parameters in all the parameterization techniques mentioned here

can be back-propagated. We summarize the number of parameters required
from a neural network output, representation type and the associated group
actions of different subgroups in Table 6.1.

Table 6.1: Subgroup Properties

Subgroup #Parameters Representation type Group action

GL(n) n2 Matrixn×n Matrix multiplication
SE(n) n(n−1)

2
+ n Matrix(n+1)×(n+1) Matrix multiplication

SO(n) n(n−1)
2

Matrixn×n Matrix multiplication
T (n) n Vectorn Addition

6.2 Symmetry Enforcing Loss Functions
We consider a standard RL setup where the agent interacts with its environ-
ments in episodes and we have access to ({st, at, rt, st+1})t=1,..,T where st is
the state, at is the action taken by the agent, rt is the reward received and
st+1 is the observed next state at timestep t. Below we describe three loss
functions that encode the equivariance/invariance constraints of Eqs. (2.5),
(6.5) and (6.6).

Action Equivariant Transition Loss - Eq. (6.5) Given triplets ⟨st, at, st+1⟩
from our dataset we simply apply a loss function ℓ such as a square loss4 that
penalizes the difference between two arguments:

LAET (θ, ϕ) = ℓ (τθ(st+1), κϕ(st, at)τθ(st)) . (6.8)

4In practice we use the normalized square loss ℓ(Y,Y′) =
∥∥∥ Y
∥Y∥2

− Y′

∥Y′∥2

∥∥∥2
2

86

The choice of the embedding space and the latent transition function
ensures that state embeddings are transformed by linear group action of
the action embeddings. Minimization of LAET encourages these symmetry
transformations to capture state transitions resulting from the agent’s action.

Group Equivariant Transition Loss - Eq. (6.6) For this, we need a st′
in addition to ⟨st, at⟩, where t′ can be any state (at a different time step in
the same or in a different episode.) We find the group transformation that
maps s to s′ in the latent space using τg = τθ(st′)τθ(st)

−1. Using this we can
rewrite Eq. (6.6) as

τθ(st′)τθ(st)
−1︸ ︷︷ ︸

τg

κϕ(st, at)τθ(st) = κsgκϕ(st, at) τθ(st′)︸ ︷︷ ︸
τgτθ(st)

. (6.9)

Since the state-dependent action encoding κϕ(st, at) for the pair ⟨st, at⟩ is also
produced by a neural network, the only missing part in the equation above
is κsg, the state-dependent action transformation. We use a neural network
ρω : τg 7→ κsg to infer it from state transformation τg.

Example 1. To get an intuition for what this network is doing consider
the example of a pendulum without gravity, with rotation and reflection
symmetry O(2) as shown in Fig. 6.2, where inputs to the networks (s) are
image sequences and the (ideal) embeddings τθ(s), κϕ(s, a) are the angle plus
angular velocity and torque respectively. If we rotate the pendulum using a
rotation matrix τg, we expect the state-dependent action embedding to remain
the same since the effect of torque remains similar after rotation. However, if
we transform the pendulum by reflection around the vertical axis, we expect
that the effect of torque will be negated. ρω parameterizes this dependence.

A loss function ℓ could then measure the difference between the left and
right-hand sides of the equation above

LGET (θ, ϕ, ω) =ℓ
(
τθ(st′)τθ(st)

−1κϕ(st, at)τθ(st),

ρω(τθ(st′)τθ(st)
−1)κϕ(st, at)τθ(st′)

)
. (6.10)

Action Invariant Reward Loss - Eq. (2.5) While LAET and LGET
enforce the equivariance of the latent transition model to an agent’s action
and the symmetry group, they do not encode information about the reward in
the state representations. In order for the latent model to be homomorphic to
the underlying MDP of the environment we match the reward at every state

87

embedding using a reward predictor network rψ : τθ(s) 7→ R. We measure the
difference between the predicted reward and the actual reward at time step
t+ 1:

LR(ψ, θ, ϕ) = (rψ(κϕ(τθ(st), at)τθ(st))− rt+1)
2 . (6.11)

Example 2 (Sliding Ball). Here, we visualize the matrix embedding produced
using our loss functions on a simple toy example. We design a sliding ball
environment where a ball moves on the screen vertically in a closed loop with
two actions: up and down. We parameterize the latent representation to be a

single block of SO(2), that is a rotation matrix τθ(s) =
[
cos(β) sin(β)
− sin(β) cos(β)

]
,

where β is the output of the image encoder network. Since in this example, the
action encoding is not state-dependent, we obtain it by feeding the action to

the action encoder network κ(a) =
[
cos(α) sin(α)
− sin(α) cos(α)

]
where β is the output

of the network. As the action is also invariant to the group transformation
SO(2), Eq. (6.10) becomes unnecessary, and we can only use Eq. (6.8). To
this end, we randomly sample actions (up and down) and generate trajectories
to train the encoder using Eq. (6.8). Fig. 6.3 visualizes the learned embedding.
For visualization, we transform a 2D unit vector ([1, 0] using the matrix
embedding of the state. As the ball moves in a 1D loop in the environment,
the encoder learns to map the transformation to the correct rotation matrix
in SO(2).

6.3 Application to Model-free RL
While the framework discussed so far is ideal for model-based RL, here
we confine our experiments to a model-free setting. Following the success
of transition models for representation learning in model-free RL (Gelada
et al., 2019; Schwarzer et al., 2021), we add the losses discussed above to the
Temporal Difference (TD) error in Deep Q-learning. In practice, we need to
make three modifications to our model/loss. These modifications are from
the self-supervised representation learning literature (Grill et al., 2020) and
were introduced in the RL setup in (Schwarzer et al., 2021). For ablation
studies on these additional components, we refer the reader to (Schwarzer
et al., 2021).

Target Network A trivial solution to both equivariance enforcing losses
of Section 6.2 is to encode all states and actions using an identity matrix.

88

SO2

transformation

Figure 6.3: (a) Latent visualization of a sliding ball environment. The ball moves up or
down in one dimension as dictated by the action. We show that our latent parameterization
combined with LAET learns the SO(2) manifold of the ball’s transition. To obtain the
visualization, we start with a 2D unit vector ([1, 0] here) and transform it using the
representation matrix obtained from the trained encoder by feeding the image observations.
Images of eight uniformly separated positions of the ball are mapped to the red points,
which denote the transformed unit vector.

This problem in different contexts is known as the problem of collapse in
representation learning. While using the reward signal helps in avoiding
the collapse, it is often not sufficient in sparse reward settings. Following
Schwarzer et al. (2021), we use a target network to encode state st+1 and
st′ in Eq. (6.10) in which the network parameters do not receive a gradient
and are copied from the online network. We explicitly drop the subscripts to
differentiate the target from the online network in this section (e.g., τθ → τ).

Projection Head for Transition Losses The strict enforcement of sym-
metry constraints by our model can be overly restrictive when the environment
has non-symmetric components, or when our transition model is too simplistic.
For this reason, following previous work, we enforce the losses on a learnable
projection of the state embedding. That is, before application of the loss ℓ in
Eqs. (6.8) and (6.10) we pass the embedding through a projection head.

89

M-step prediction Following the success of (Schwarzer et al., 2021) in
long-term state embedding predictions, we predict state embeddings and
rewards for M -steps.

6.3.1 Putting it All Together
Considering M consecutive state-actions {st:t+M , at:t+M} and x̂t = xt = τθ(st),
we predict the state embeddings and the rewards of the next M steps:

x̂t+m = κϕ(x̂t+m−1, at+m−1)x̂t+m−1 and
r̂t+k = rψ(x̂t+k) ∀m ∈ {1, . . . ,M}

Here we are using x̂ for M-step model prediction of the embedding to dis-
tinguish this from the latent embedding x, and the embedding produced by
the target network x̄ = τ(st+m). This also applies to the M-step predicted
reward r̂ and observed reward r. We then project these embeddings using a
projection head pζ to produce ẑt+m = pζ(x̂t+m) and z̄t+m = p(x̄t+m). Using
this notation, our final expressions for LAET and LR are:

LAET =
M∑
m=1

∥∥∥∥ ẑt+m
∥ẑt+m∥2

− z̄t+m
∥z̄t+m∥2

∥∥∥∥2
2

and LR =
M∑
m=1

(r̂t+m − rt+m)2 (6.12)

For LGET we need ⟨st, at, st+1⟩ and another state s′. From their embed-
ding using the notation above we obtain τg = x̄t′xt

−1, the linear transfor-
mation between them, and κsg = ρω(τg), the state-dependent action trans-
formation. Now for x̄t′ , we obtain the predicted next state from x̄t′ as
x̄t′+1 = κsgκ(xt, at)x̄t′ = ρω(xt′x

−1
t)κ(xt, at)x̄t′ and from x̂t+1 as x̂t′+1 = τgx̂t+1.

Before penalizing the difference between these embeddings, we project them
to ŷt′+1 = bη(x̂t′+1) and ȳt′+1 = b(x̄t′+1) using projection head bη, to get the
final expression for LGET :

LGET =

∥∥∥∥ ŷt′+1

∥ŷt′+1∥2
− ȳt′+1

∥ȳt′+1∥2

∥∥∥∥2
2

(6.13)

Q-learning We pass the representation xt to a Q-learning head qξ to learn
policies based on the output of the Q-value estimator. The Q-value estimator
is learnt by minimizing:

LDQN(ξ, θ) =
(
qξ(τθ(st), at)− (rt + γmax

a
qξ(τ(st+1), a))

)2
90

We use the data efficient adaptation of Rainbow (van Hasselt et al., 2019;
Hessel et al., 2018) which combines many improvements over the original
DQN(Mnih et al., 2013a) such as Distributional RL(Dabney et al., 2018),
Dueling DQN (Wang et al., 2016), and Double DQN (Van Hasselt et al.,
2016). The total loss optimized by our model is:

L = LDQN + λ1LR + λ2LGET + λ3LAET (6.14)

where λ1, λ2 and λ3 are hyper-parameters. We use λ1 = λ2 = λ3 = 1 in all
experiments.

Motivated by the performance improvements due to augmentation reported
in recent literature (Yarats et al., 2021b; Schwarzer et al., 2021), we also
augment our states by shifting and changing the pixel intensity before encoding
them. Below, we provide the algorithm in Algorithm 1, a detailed schematic
in Fig. 6.4 and the network architectures of our model.

Network Architecture. We follow the baseline RL implementation of
DrQ (Yarats et al., 2021b) and SPR (Schwarzer et al., 2021) by using the
3-layer convolutional encoder from (Mnih et al., 2015a) and then use a linear
layer to get the parameters for the Group Parameterization. The output size
of this layer varies depending on the group type, the number of blocks used
and the size of the group. This defines our τθ. Note that the output of our
encoder is a matrix for GL(n) and SE(n). We flatten it before we feed it to
other neural networks like the Q-head qξ(·).

For the action encoder κ(·) we use a simple 1 layer MLP with batchnorm,
ReLU and a hidden size of 256. We concatenate the one-hot encodings
of the actions with the state representations coming from τθ and pass it
through the action encoder to get the matrix representation of the group after
parameterization.

For the reward predictor network, rψ we use a 2-layered MLP with batch
norm, ReLU and a hidden size of 256.

For the Q-head qξ(·) we use 2-layered MLP as well.
For the projection head pζ(·) we share the first layer of Q-head whereas,

for the projection head bη(·), we use a single layer MLP.

6.4 Experiments
We test our method on a suite of 2D Atari games, which is a popular bench-
mark used in RL. The full Atari suite consists of 57 games with typically 50
million environment steps. We use the sample-efficient Atari suite introduced

91

Algorithm 1 Equivariant Representations for RL
Denote the parameters of online networks τθ, κϕ, pζ , bη as Θo

Denote the parameters of target networks τ , κ, p, b as Θc

Denote the parameters of networks ρω, qξ as Φ
Denote the depth of the prediction as M and batch size as N
Initialize the replay buffer B
while Training do

Collect {s, a, r, s′} using policy with (Θo,Φ) and add to the buffer B
Sample a minibatch of M length sequences {s0:M , a0:M , r0:M} ∼ B
for i in range(0, N) do

if augmentation then
si0:M ← augment(si0:M)

end
xi0 ← τθ(s

i
0) ; // state representation

x̂i0 ← xi0
li ← 0
for k in range(1,M + 1) do
x̂ik ← κϕ(x̂

i
k−1, a

i
k−1)x̂

i
k−1 ; // state transition

x̄ik ← τ(sik) ; // target state representation
ẑik ← pζ(x̂

i
k), z̄ik ← pζ(x̄

i
k) ; // projections

li ← li + λ2∥ ẑt+k

∥ẑt+k∥2
− z̄t+k

∥z̄t+k∥2
∥22 ; // compute LAET at step k

r̂ik ← rψ(x̂
i
k) ; // predict rewards

li ← li + λ1∥r̂ik − rik∥22 ; // compute LR at step k
end
j ∼ {0, . . . , N − 1} ; // uniformly sample an index
x̄j0 ← τ(sj0) ; // encode the state for that index
τ ig = x̄j0x

i
0
−1 ; // find the group representation

x̂j1 ← τ igx̂
i
1 ; // next state by group action

x̄j1 ← ρω(τ
i
g)κ(x

i
0, a

i
0)x̄

j
0 ; // next state by action-embedding

ŷi1 ← bη(x̂
j
1), ȳi1 ← b(x̄j1) ; // projections

li ← li + λ3∥ ŷi1
∥ŷi1∥2

− ȳi1
∥ȳi1∥2
∥22 ; // compute LGET

li ← li + RLloss(x̂i0, ai0, ri0, x̄i1; qξ)
end
l← 1

N

∑N
i=0 li ; // average over minibatch

Θo,Φ← optimize((Θo,Φ), l) ; // update online networks
Θc ← Θo ; // copy weights to target networks

end

92

Figure 6.4: A schematic of the EqR model, applied to model-free RL. Green in the
framework corresponds to learning equivariance under the agent’s action and red corresponds
to learning equivariance of the transition model with respect to symmetry transformation of
the state-action. This color scheme is consistent with Figure 2. The part of the framework
that corresponds to reward matching and Q-learning is shown in blue and brown respectively.
The arrows in the schematic are differentiated by their heads and are described in the
legend.

by Kaiser et al. (2019b), which consists of 26 games with only 100,000 environ-
ment steps of training data available. In our experiments, we use three types
of simple connected Lie subgroup blocks including General Linear GL(2),
Special Euclidean SE(2), and Translation T (2). We provide details about
the groups and a general recipe to implement them efficiently in (Mondal
et al., 2022). Unless stated otherwise, our EqR model uses SE(2) subgroup
blocks, with K = 12 blocks and M = 5 steps during training. LAET is always
used to train EqR. LGET , which makes the transition model equivariant
with respect to the symmetry transformation of state-actions, and LR are
optional. We build our implementation on top of SPR’s (Schwarzer et al.,

93

Figure 6.5: Performance profiles for different methods based on score distributions (a),
and average score distributions (b). Shaded regions show pointwise 95% confidence bands.
The higher the curve, the better the method is.

2021), which is based on rlpyt (Stooke & Abbeel, 2019) and PyTorch (Paszke
et al., 2019). We use the same underlying RL algorithm and hyperparame-
ters used by SPR for a fair comparison. Our implementation is available at
https://github.com/arnab39/Symmetry-RL.

Evaluation Metrics We compute the average episodic return (the ‘game
score’) at the end of training and normalize it with respect to human scores,
as is standard practice. The human-normalized score (HNS) is given by
agent score - random score
human score - random score . Since there is considerable variance across different
runs, the mean and the median are not very reliable metrics. Instead, Agar-
wal et al. (2021) propose using bootstrapped confidence intervals (CI) with
stratified sampling which is more suitable for small sample sizes (10 runs
per game in our case). We report the Interquartile Mean (IQM), which is
the mean across the middle 50% of the runs, as well as the Optimality Gap,
which is the amount by which the algorithm fails to meet a minimum HNS
of 1.0. We also provide performance profiles showing the fraction of runs
above a certain normalized score, which gives a more complete picture of the
performance.

Results We use 10 seeds for every game, for every variation of our model.
Figure 6.5 shows performance profiles for our model, EqR with LR + LGET ,
along with other comparable methods. If one curve is strictly above another,
the better method is said to “stochastically dominate” the other (Agarwal

94

https://github.com/arnab39/Symmetry-RL

Figure 6.6: Plots of Interquartile Mean (IQM) and Optimality Gap (Agarwal et al., 2021)
computed from human-normalized scores, showing the point estimates along with 95%
confidence intervals (over 10 runs for all methods, 5 runs for SimPLe). A higher IQM and
a lower optimality gap reflect better performance. (a) shows different methods for all 26
games. (b) shows our proposed method with different loss components for all 26 games.

et al., 2021). The curves for both variations of the proposed method are
almost always above the next best method, SPR (Schwarzer et al., 2021),
indicating it has a better tail distribution of scores. Figure 6.6 provides
results for different methods on all 26 games. The two best variations of
the proposed method outperform previous methods, and the difference is
statistically significant considering the CI.

In order to better understand the effect of various modeling choices, loss
functions and implementation details on the performance, we now consider
different variations of EqR, with the same augmentation as the baseline for
ablation studies.

Choice of Group To understand the role of the choice of a group in the
embedding space, we use our EqR model with LR. This variation of EqR is
similar to DeepMDP (Gelada et al., 2019), except for the group structured

95

latent embedding space and group action-based state transition. In order to
investigate the effect of the above two group-related constructs, we remove
them and use an action encoder to predict the next states directly, referring
to this as MLP which makes it like DeepMDP but with normalized mean
square error loss for the model learning part.

Loss functions Figure 6.6 compares the performance of EqR with different
loss components. Using EqR with the default LAET results in a considerable
improvement over Rainbow with augmentation (note that this is still using
symmetry-based representation and transition with SE(2) subgroup blocks.)
Adding LGET improves the performance slightly while adding only LR im-
proves the performance even further. We hypothesize that the reward loss
plays a role in both preventing representation collapse and preserving more
information about the reward distribution in the latent state embeddings.
Adding both LGET and LR improves the performance only slightly. The
reason why the contribution of LGET is not significant is likely that this
prior of an equivariant transition model with respect to symmetry trans-
formations of state-actions is too restrictive for some games while being
beneficial for others. Notably, in 17 out of a total of 26 games, including this
loss term leads to a statistically significant boost in performance. These 17
games are: ‘Alien’, ‘BankHeist’, ‘BattleZone’, ‘Boxing’, ‘ChopperCommand’,
‘CrazyClimber’, ‘DemonAttack’, ‘Freeway’, ‘Hero’, ‘Jamesbond’, ’MsPacman’,
‘Pong’, ‘PrivateEye’, ‘Qbert’, ‘RoadRunner’, ‘Seaquest’, ‘UpNDown’.

6.5 Related work
The use of transformations, be it in data augmentation or self-supervision,
has become a common ingredient in recent representation learning methods
for deep RL. However, theoretical work on symmetry in RL goes back to
Zinkevich & Balch (2001) and Ravindran & Barto (2001), both of which
use symmetric MDPs. More recent use of this formalism is in van der Pol
et al. (2020b); Mondal et al. (2020), where policy networks, with built-in
equivariance, are shown to improve data efficiency. Closely related notions,
that motivated the early work on symmetric MDPs, are model minimization
(Ravindran & Barto, 2002), state abstraction (Ravindran & Barto, 2003;
Li et al., 2006), MDP homomorphism (Ravindran & Barto, 2004) and lax
bisimulations (Taylor, 2008). In particular, MDP homomorphism, which
requires equivariance under an agent’s action, encompasses the general idea
of model-based reinforcement learning. For example, a latent MDP that

96

matches the state dynamics and the reward distribution of the environment
is learned in (van der Pol et al., 2020a; Gelada et al., 2019).

Other work in RL that is relevant to our objective includes attempts to
increase data efficiency using a learned model of the environment. While some
methods such as SimPLe (Kaiser et al., 2019b), learn this transition model
at the pixel level, the majority of approaches use a latent space model. The
latent space is either learned using reconstruction (Hafner et al., 2019a,b),
or through self-supervision and contrastive methods (Laskin et al., 2020b)
(CURL). However, there is evidence that the improvement in sample efficiency
is largely due to image augmentation, as seen in Laskin et al. (2020a) and
DrQ (Yarats et al., 2021b). Using a reconstruction-based method is also
inefficient because similar to pixel-level models, one needs to learn potentially
irrelevant details. The fact that variations of model-free algorithms such as
Data-Efficient Rainbow (DER) (van Hasselt et al., 2019) and OTRainbow
(Kielak, 2019) are competitive with reconstruction-based methods without
explicit representation learning components confirms this intuition. More
recently SPR (Schwarzer et al., 2021) shows that data augmentation and
improvements in Rainbow combined with particular forms of self-supervision,
can significantly improve the sample efficiency, leading to state-of-the-art
results in sample-efficient representation learning in RL.

6.6 Discussion
In this chapter, we introduced a latent variable model for representation learn-
ing in RL, considering both equivariance to an agent’s action and symmetry
transformations in the environment. The proposed model has the capacity to
become equivariant to non-linear symmetry transformations of state-actions.

We have considered three major symmetry-related constructs within a
single coherent framework. First, we use the group equivariant state and
action embedding, which we achieve through Lie parameterization. We believe
our Lie parameterization will have applications beyond RL, for learning
symmetric representations. The world modeling constraints further ensure
that the transformations captured by the equivariant embedding are relevant.
Second, the equivariance to the agent’s action, which when combined with
group equivariant embeddings, ensures that the state transitions are captured
by symmetry transformations in the latent space. Our empirical results
suggest the importance of these two components in improving performance in
Atari games with limited data. However, symmetry in RL can also appear in

97

the form of a symmetric MDP. By this we mean that not only are the state
and action embeddings equivariant and that the transition model uses group
transformation, but also that the latent transition model itself is equivariant
under symmetry transformations of state-action pairs. This is a stricter
constraint, and we found it marginally helpful in some settings of Atari
games.

Key Limitations One limitation of the current approach is its reliance
on a pre-defined group of transformations, which may not capture all rele-
vant symmetries in complex environments or might impose overly restrictive
constraints that hinder performance in less structured scenarios. The latter
becomes more of a problem especially when we impose the equivariance
constraint of the transition dynamics. Additionally, the practical application
of the model among RL practitioners may be limited by its complexity and
the high level of technical expertise required for effective implementation and
tuning.

Future Research Directions: Future work could explore adaptive meth-
ods that learn the symmetry group directly from interactions with the envi-
ronment, potentially leading to more flexible and broadly applicable models.
Investigating the scalability of this approach to more complex and higher-
dimensional tasks, such as those involving 3D environments or more intricate
agent interactions, could also prove fruitful. Furthermore, adding model-
based RL techniques within this framework might lead to more robust and
efficient learning algorithms. These directions not only promise to extend the
applicability of the model but also contribute to a deeper understanding of
learning symmetry in reinforcement learning. Moreover, the insights from this
work can also lead to the development of new theoretically grounded methods
for combining both symmetric and asymmetric aspects of the environment in
one model.

98

7
Equivariant Representations

using Group Invariants

This chapter presents an alternate approach to learning equivariant represen-
tations from the data and is taken from (Shakerinava et al., 2022). While
recent years have witnessed a range of exciting equivariant deep models,
there are several limitations. First, most equivariant networks constrain the
network architecture, often requiring specialized implementations. Moreover,
transformations considered by the existing methods are often assumed to
be linear in both input and representation space. This is the case for archi-
tectures designed for finite permutation groups and continuous Lie groups.
Approaches that go beyond linear transformations in the input space often
assume access to group information – i.e., the group member that transforms
one input to another is known. This paper introduces a simple approach that
addresses all of these limitations.

Our approach uses the invariants of a given linear representation of a
transformation group. Previously invariants were used to connect different
geometries, and group theory in Klein’s Erlangen program (Klein, 1893).
According to this view, geometries are concerned with invariant quantities
under certain transformations. For example, Euclidean geometry is concerned

99

with the length, angle, and parallelism of lines, among others, because Eu-
clidean transformations preserve these. However, moving to the more general
and less structured Affine geometry, notions of distance and angle are no
longer relevant, while parallelism remains an invariant of the geometry. The
corresponding symmetry groups are examples of Lie groups that have a sub-
group relation, E(n) < Aff(n), thereby enabling the groups to characterize
a hierarchy (or lattice) of different geometries.

From this geometric perspective, our proposal is to induce a geometry
on the embedding and make it equivariant to a given group by enforcing
the invariants of their defining action. For example, distance is the invariant
for Euclidean geometry, which means all distance-preserving transformations
are Euclidean. Therefore, to enforce equivariance to the Euclidean group,
it is sufficient to ensure that the embedding of any two data points has
the same distance before and after the same transformation of the inputs;
see Fig. 7.1. While this approach uses the defining action of different groups
in the embedding space, the same group can have a non-linear and unknown
action on the input space. In the pendulum example of Fig. 7.1, the group
E(3) acts on the value of each input image pixel using an unknown and
non-linear action. Moreover, this approach does not require the pairing of
group members with transformations, a piece of information that is often
unavailable.

Figure 7.1: E(3)-equivariant embedding
for the pendulum. The input x consists of
a pair of images that identify both the angle
and the angular velocity of a pendulum. The
equivariant embedding learns to encode both:
the true angle is shown by a change of color
and angular velocity using a change of bright-
ness. The two circular ends (black and white)
correspond to states of maximum angular ve-
locity in opposite directions. The SymReg ob-
jective for the Euclidean group learns this em-
bedding by preserving the pairwise distance
between the codes before (f(x), f(x′)) and af-
ter (f(tX (g, x)), f(tX (g, x))) transformations of
the input by tX . Therefore dashed lines have
equal lengths. For the pendulum, the transfor-
mations are in the form of applying positive or
negative torque in some range.

100

In the rest of the chapter, we arrive at the idea above from a different
path by first observing that equivariance, in its general form, can be a weak
inductive bias. This is because having an injective code is sufficient for
equivariance to “any” transformation group. However, in this manifestation
of equivariance, the group action on the embedding can be highly non-
linear. Since the simplicity of the action on the embedding seems essential
for equivariance to become a useful learning bias, Section 7.2 proposes to
regularize the group action on the code to make it “simple”. This symmetry
regularization (SymReg) objective is group-dependent and the essence of our
approach. Enforcing geometric invariants in the latent space is proposed as
a symmetry regularization. While we focus on equivariant representation
learning through self-supervision, in principle, supervised tasks can also benefit
from the proposed SymReg.

7.1 Actions in the latent space matter more
in equivariant models

A symmetry-based representation or embedding is a function f : X → Z such
that both X and Z are G-sets, and furthermore, f “knows about” G-actions,
in the sense that transformations of the input using tX have the same effect
as transformations of the output using some action tZ :

f(tX (g, x)) = tZ(g, f(x)) ∀g, x ∈ G×X (7.1)

The following claim shows that despite many efforts in designing equivari-
ant networks, simply asking for the representation to be equivariant is not a
strong inductive bias, and we argue that the action matters. Put another way,
the strong performance of existing equivariant networks should be attributed
to the fact that the group action on the embedding space is simple (linear).

Proposition 7.1.1. Given a transformation group tX : G × X → X , the
function f : X → Z is an equivariant representation if ∀g ∈ G, x, x′ ∈ X

f(x) = f(x′)⇔ f(tX (g, x)) = f(tX (g, x
′)). (7.2)

That is, two embeddings are identical iff they are identical for all transforma-
tions.

Proof. Let ∼f be an equivalence relation on X , such that two points are
“equivalent” if they have the same embedding x ∼ x′ ⇔ f(x) = f(x′). We use

101

[x]∼ to denote the equivalence class of x. To get an intuition for this result,
first consider an injective f , where the equivalence classes are trivial [x]∼ = x.
In this case for any G-set X , f is G-equivariant with G-action on Z defined
by

tZ(g, y)
.
= f(tX (g, f

−1(y))) ∀g, y ∈ G×Z (7.3)

Now to see why f is equivariant to any action tX and the corresponding tZ
defined above, simply replace the definition of tZ into definition of equivariance
Eq. (7.1)

tZ(g, f(x)) = f(tX (g, f
−1(f(x)))) = f(tX (g, x)) (7.4)

For general functions, note that f−1(f(x)) = [x]∼. The equation above
makes sense iff tX (g, x

′) = tX (g, x
′′)∀x′, x′′ ∈ [x]∼, which is basically the

assumption of Eq. (7.2). This means [tX (g, x)]∼
.
= [tX (g, x)]∼, and using the

tZ of Eq. (7.3) in the definition of equivariance, we see that its condition is
satisfied

tZ(g, f(x)) = f(tX (g, f
−1(f(x)))) = f(tX (g, [x]∼))

= f([tX (g, x)]∼) = f(tX (g, x)) (7.5)

The condition above is satisfied by all injective functions, indicating that
many functions are equivariant to any group.

Corollary 7.1.2. Any injective function f : X → Z is equivariant to any
transformation group tX : G×X → X , if we define G action on the embedding
space as

tZ(g, z)
.
= f(tX (g, f

−1(z))) ∀g, z ∈ G×Z (7.6)

The ramification of the results above in what follows is two-fold:
1. While injectivity ensures equivariance, the group action on the embedding,
as shown in Eq. (7.6), can become highly non-linear. Intuitively, this action
recovers x = f−1(z), applies the group action x′ = tX (x) in the input domains
and maps back to the embedding space f(x′) to ensure equivariance. In the
following, we push tZ towards a simple linear G-action through optimization
of f . This objective can be interpreted as a symmetry regularization or a
symmetry prior (SymReg).

102

2. Although Theorem 7.1.2 uses injectivity of f for the entire X , we
only need this for the data manifold. In practice, one could enforce in-
jectivity on the training dataset D using a decoder, architectural choices
such as momentum encoder (He et al., 2020), or loss functions defined on
the training data, such as a hinge loss (Hadsell et al., 2006) Lhinge(f,D) =∑

x,x′ ̸=x∈D max (ϵ− ∥f(x)− f(x′)∥, 0) or other losses that monotonically de-
crease with distance, such as 1

∥f(x)−f(x′)∥ , or its logarithm− log(∥f(x)− f(x′)∥).
In experiments, we use the logarithmic barrier function.

7.2 Symmetry Regularization Objectives
In learning equivariant representations, we often do not know the abstract
group G and how it transforms our data, tX . We assume that one can pick a
reasonable abstract group G that “contains” the ground truth abstract group
acting on the data – i.e., G action on the input may not be faithful. Our goal
is to learn an f : X → Z that is equivariant w.r.t. the actions tX , tZ , where
tX : G× X → X is unknown and tZ is some (simple) G-action on Z of our
choosing.

More Informed but Less Practical Setting. In the most informed case,
the dataset also contains information about which group member g ∈ G
can be used to transform x to x′ – that is, the dataset consists of triples
⟨x, g, xt = tX (g, x)⟩. By having access to this information, we can regu-
larize the embedding using the following loss function: Linformed

G (f,D) =∑
⟨x,g,xt⟩∈D ℓ

(
f(xt) − tZ(g, f(x))

)
, where ℓ is an appropriate loss function,

such as the square loss. At its minimum, we have f(xt) = tZ(g, f(x)) or
f(tX (g, x)) = tZ(g, f(x)), enforcing equivariance condition of Eq. (7.1). How-
ever, even if the optimal value is not reached, due to its injectivity, f is still
G-equivariant, and the objective above is to regularize the G action on the
code. This informed setup is used in equivariant contrastive learning of (Dan-
govski et al., 2021). The assumption of having access to g is realistic when we
know the action tX , so that we can generate ⟨x, g, xt⟩ triplets. Fortunately,
using group invariants, we may still learn an equivariant embedding, even if
we do not have the group information tied to the dataset.

Here, we introduce our method for several well-known groups first and
then elaborate on the more general treatment.

Example 3 (Euclidean Group). The defining action of the Euclidean group
E(n) is the set of transformations that preserve the Euclidean distance between

103

any two points in Rn, a.k.a. isometries. These transformations are composi-
tions of translations, rotations, and reflections. Since, for the real domain, all
Euclidean isometries are linear and belong to E(n), we can enforce the group
structure on the embedding by ensuring that distances between the embed-
dings before and after any transformation match. For this, we need the dataset
D to be a set of pairs of pairs

(
⟨x, xt = tX (g, x)⟩, ⟨x′, x′t = tX (g, x

′)⟩
)
, where

x, x′ are transformed using the same unknown group member g. Distance-
preservation loss below combined with injection loss is sufficient to produce
an E(n)-regularized embedding:

LE(n)(f,D) =
∑(

⟨x,xt⟩,⟨x′,x′t⟩
)
∈D

ℓ
(distance before the

transformation︷ ︸︸ ︷
∥f(x)− f(x′)∥−

distance after the
transformation︷ ︸︸ ︷

∥f(xt)− f(x′t)∥
)

(7.7)

For example, in the standard RL setup, where we have access to triplets
(s, a, s′), we can easily form D by unrolling an episode and collecting two
different state transitions corresponding to a particular action. In practice,
with a finite number of actions, we can efficiently generate this dataset by
keeping a separate buffer for each action where we store state transitions for
that action and sample from that buffer to train the embedding function f .

Example 4 (Orthogonal and Unitary Groups). The defining action of the
orthogonal group O(n) preserves the inner product between two vectors. The
analogous group in the complex domain is the unitary group, which preserves
the complex inner product. Our symmetry-regularization objective enforces
this invariant: LO(n)(f,D) =

∑(
⟨x,xt⟩,⟨x′,x′t⟩

)
∈D

ℓ
(
f(x)⊤f(x′)− f(xt)⊤f(x′t)

)
.

For the unitary group, one additionally needs to embed to complex domain
Z = Cn, where the only difference is in the definition of the inner product.

7.2.1 Practical Implementation
Choice of Lie group Deciding on a Lie group for each application and in
particular working with the corresponding invariants can be cumbersome. A
simple alternative is to use an E(n)-equivariant embedding for sufficiently
large n. This is because Lie groups have isometric Euclidean embedding
for sufficiently large n. We demonstrate this in the experiments with SO(3)
group in Section 7.3.1.

104

Figure 7.2: Visualization of Sym-
Reg’s latent projection for the rotat-
ing Chair dataset. The chair is rotated
in three orthogonal axes from 0 to 2π.
The latent embedding for each chair pose
is projected from a 16D embedding space
to a 2D space for visualization. The col-
ors of the representations are mapped to
the chair’s angle of rotation. We notice
that the mapping function f learned is
continuous with respect to the transfor-
mations of the object, and it maps the
rotations along an axis to a circular mani-
fold. This is true for each orthogonal axis
of rotation. We observe a similar result
for any other initial pose for the chair.

Algorithm Although SymReg is using simple loss functions for equivariant
representations, for the benefit of clarity, here we give the algorithm for E(n)
equivariance. Algorithm 1 gives a generic training step of SymReg for E(n),
and Algorithm 2 provides its integration in RL environments for encoder
pre-training. The policy used to collect data in the RL setting can be a
behavior policy for offline RL and a random policy for online RL. Note that
there are many ways SymReg can be exploited in RL but in this work, we
limit ourselves to preliminary representation learning experiments.

7.3 Experiments
We conducted many experiments to qualitatively study the representation
learned by SymReg and its ability to produce a disentangled representation,
and quantitatively compare it against simple baselines in representation
learning and downstream RL tasks. Details of architecture and training can
be found in (Shakerinava et al., 2022).

7.3.1 Qualitative Analysis
In this section, we visualize the representation learned for the pendulum
example from the Gym environment (Brockman et al., 2016), followed by an
experiment involving a rotating object where we know the ideal embedding
is the SO(3) manifold. Our objective here is to visually demonstrate the
behavior of SymReg and its remarkable ability to learn an embedding informed

105

Algorithm 2 SymReg for E(n) - Training Steps
Denote the encoder as eθ with parameters θ
Given a batch of samples {(xi1, xi2), (x̂i1, x̂i2)}Bi=1 where B is the batch size
leqv, lbarrier, zall = 0, 0, {}
for i in range(1, B) do

zi1, z
i
2, ẑ

i
1, ẑ

i
2 = eθ(x

i
1), eθ(x

i
2), eθ(x̂

i
1), eθ(x̂

i
2) ; // encode the data

leqv = leqv + (∥zi1 − zi2∥ − ∥ẑi1 − ẑi2∥)2; // compute SymReg loss
zall = zall ∪ {zi1, zi2, ẑi1, ẑi2}

end
for zi, zj in zall do

if zi ̸= zj then
lbarrier = lbarrier − log(∥zi − zj∥) ; // compute barrier loss

end
end
leqv, lbarrier = leqv/B, lbarrier/(4B − 1)2; // normalize the losses
ltotal = leqv + lbarrier; // compute the total loss
θ ← optimize(θ, ltotal); // update the encoder params

Algorithm 3 SymReg for Pretraining the Encoder in RL Environments
Denote the encoder as eθ with parameters θ and action space by A
if A is continuous then

Discretize A into k actions {a1, . . . , ak}
end
Initialize k replay buffers {B1, . . . ,Bk} for each action
for step in range(1,max_pretraining_steps) do

Collect {s, a, s′} using a given policy and add to the buffer Bi of a
if step > warm_up_steps then

Sample a batch B of buffers with repetition
Sample two state transitions from each sampled buffer
Create a batch of samples {(si1, si2), (ŝi1, ŝi2)}Bi=1

Perform SymReg training step with eθ and {(si1, si2), (ŝi1, ŝi2)}Bi=1

end
end

106

by the non-linear transformation of the input.

The Pendulum. For this experiment, the input x is two consecutive frames
of the pendulum that have been grayscaled and downsampled to 32 × 32
pixels. The action space is a range of torques that can be applied to the
base of the pendulum. We use the action to transform the data. We use
the objective of Eq. (7.7) to learn an E(3)-equivariant representation. To
efficiently estimate LE(n), we use a mini-batch that consists of 64 randomly
sampled observations from the environment and their transformations via
three randomly sampled actions (4× 64 samples in total). The model learns
to parameterize the embedding using the angle and the angular momentum
of the pendulum from the input data; see Fig. 7.1.

Rotating Chair. We consider a 3D chair from ModelNet40 (Wu et al.,
2015) and transform it through the action of the group SO(3). The group
action on the input is the 2D projection into a 48× 48 image after the 3D
rotation of the chair. While the group of interest is SO(3), we use SymReg
loss of Eq. (7.7) following Section 7.2.1. We embed the chair in R16 using
SymReg1and visualize the latent by rotating the chair along three orthogonal
axes and projecting the latent codes into a 2D space. Fig. 7.2 shows three
circular latent traversals of SymReg embedding corresponding to rotation
around each axis, which is consistent with the structure of the SO(3) manifold.
The process of learning the SO(3) manifold is a challenging task, and previous
works assumed that the group member corresponding to each transformation
is given (Quessard et al., 2020; Anonymous, 2022). In contrast, we only use
the observations corresponding to similar actions during training and not the
group members themselves. As we see later, this is critical in settings such as
RL, where group information is unavailable. We could not produce a similar
latent traversal for VAE due to collapse when rotating around some axes.

7.3.2 Quantitative Evaluation in Downstream Tasks
World Modelling

We select the Atari games Pong and Space Invaders as our environments for
the world modeling experiments. These environments were previously used
by Kipf et al. (2020) to evaluate the Contrastive Structured World Model (C-

1Note that while SO(3) manifold is 3-dimensional, its isometric embedding requires a
higher number of dimensions. Using a larger embedding dimension also often helps with
the optimization.

107

Environment Method H@1 MRR

Atari Pong

World Model(AE) 23.8± 3.3 44.7± 2.4

World Model(VAE) 1.0± 0.0 5.1± 0.1

C-SWM 36.5± 5.6 56.2± 6.2

Ours 45.2± 3.4 60.2± 3.9

Space Invaders

World Model(AE) 40.2± 3.3 59.6± 3.5

World Model(VAE) 1.0±5.3 5.3± 0.1

C-SWM 48.5± 7.0 66.1± 6.6

Ours 54.2± 6.3 68.7± 5.1

Table 7.1: Hits at Rank 1 (H@1) and Mean Reciprocal Rank (MRR) of different methods.

SWM). We train the encoder using Euclidean SymReg of Eq. (7.7), freeze it,
and then learn a Multi-Layer Perceptron (MLP) based transition function in
the latent space. Following Kipf et al. (2020), we report Hits at Rank 1 (H@1)
and Mean Reciprocal Rank (MRR), which are invariant to the embedding
scale. These evaluation metrics measure the relative closeness of the following
state’s representation predicted by the transition model and the representation
of the observed next state. We use a set of reference state representations
to measure the relative closeness (embedding random observations from the
experience buffer). Section 7.3.2 reports these measures and shows that a
simple transition model learned on top of our embedding outperforms C-SWM
in both games. Other reported baselines use an AutoEncodcer (AE) and a
Variational AutoEncoder (VAE) to learn embeddings.

Reinforcement Learning

Next, we consider three Mujoco environments: InvertedPendulum, Reacher,
and Swimmer from OpenAI Gym (Brockman et al., 2016) and learn directly
from the image observations. We compare our model with Auto-Encoder
(AE) and Self-supervised Learning (SSL) based baselines. While AE learns
to reconstruct the image observations of the states, SSL learns to inject
invariance (IN-SSL) or equivariance (EQ-SSL) to agent actions. Given a
triplet (s, a, s), IN-SSL maximizes the likelihood of f(s) and f(s′) being
similar (SimCLR (Chen et al., 2020c)). EQ-SSL of Dangovski et al. (2022), in
this context, additionally predicts the action that leads to the state transition.
We introduce two variations of each model. In the first variation, the low-
dimensional embedding is used as a substitute for the high-dimensional
input data without further adjustment (-decoupled). The second variation

108

Methods Inverted Pendulum Reacher Swimmer

Vanilla 500± 150 -11± 2.5 25.6± 3.4

AE-decoupled 30± 15 -13± 3.0 16± 3.9

AE-finetuned 580± 130 -11.5± 3.2 26± 4.3

In-SSL-decoupled 100± 17 -15± 2.6 12 ± 2.5

In-SSL-finetuned 550± 21 -12± 4.1 25.9 ± 4.8

Eq-SSL-decoupled 456± 190 -14.8± 3.1 18 ± 4.5

Eq-SSL-finetuned 710 ± 120 -10± 2.6 27 ± 3.5

SymReg-decoupled 800± 180 -14.5± 3.1 21± 4.1

Dec-SymReg-decoupled 600± 200 -12.8± 2.7 19± 5.6

SymReg-finetuned 950± 50 -10± 3.4 31.5± 3.9

Table 7.2: Average reward collected over 10 episodes for various models in Inverted
Pendulum, Reacher and Swimmer. We provide the standard errors using 5 random seeds.

allows for fine-tuning during the reinforcement learning stage (-fine-tuned).
We use random policy to collect trajectories for the pre-training and use
Proximal Policy Optimization (PPO) (Schulman et al., 2017b) algorithm for
the downstream RL task. To evaluate the data efficiency of these models,
we report the average reward collected over 10 episodes in the first 100,000
steps for Reacher and Swimmer and 30,000 steps for Inverted Pendulum in
Section 7.3.2 (since Inverted Pendulum generally learns faster, we took a
fewer number of steps.)

We see that out of all the representation learning methods, learned rep-
resentations of SymReg most adequately capture the structure of the envi-
ronment in Inverted Pendulum since the RL agent just trained on the fixed
representation (SymReg-decoupled) outperforms all of them, including vanilla
PPO. In Reacher, SymReg, along with other non-generative models, performs
poorly compared to the AE. We believe that this is because the representation
is focused on transformations caused by the agent’s actions while details
that can be valuable from the reward’s perspective — in this case, the small
object that the Reacher should reach - are ignored. This observation points
to a limitation of all non-generative approaches that fine-tuning can resolve.
To further verify this, we combined SymReg with a Decoder (Dec-SymReg)
and noticed a significant improvement in the performance of the decoupled
variation. In Swimmer, again, we see that learning the agent’s transformations
is not enough to get all the reward information as the background movement
decides how far the agent has swum. Indeed, allowing the encoder to fine-tune
allows the representations to reflect the reward information and improve

109

performance.

7.4 Related Works
Finding effective priors and objectives for deep representation learning is
an integral part of the quest for AI (Bengio et al., 2013a). Among these
priors, learning equivariant deep representations has been the subject of many
works over the past decade. Many recent efforts in this direction have focused
on the design of equivariant maps (Wood & Shawe-Taylor, 1996; Cohen &
Welling, 2016b; Ravanbakhsh et al., 2017; Kondor & Trivedi, 2018; Cohen
et al., 2019b; Finzi et al., 2021; Villar et al., 2021; Dehmamy et al., 2021;
Bronstein et al., 2021a) where the “linear” action of the group on the data
is known. A particularly relevant example here is Villar et al. (2021), which
uses group invariants to construct equivariant maps where the group acts
using its linear defining action in the input space. Due to this constraint,
the application of these models has been focused on fixed geometric data
such as images (LeCun et al., 1995), sets (Zaheer et al., 2017b; Qi et al.,
2017a), graphs (Maron et al., 2018; Kondor et al., 2018), spherical data and
the (special) orthogonal group (Cohen et al., 2018; Anderson et al., 2019;
Shakerinava & Ravanbakhsh, 2021; Finkelshtein et al., 2022), the Euclidean
group (Thomas et al., 2018; Weiler & Cesa, 2019a; Fuchs et al., 2020a) or
other physically motivated groups such as the Lorentz (Bogatskiy et al., 2020)
or Poincare group (Villar et al., 2021), among others.

In the present work, the group action is unknown and possibly non-
linear. Our setup is closer to the body of work on generative representation
learning (Burgess et al., 2018; Chen et al., 2016; Mita et al., 2021), in which
the (linear) transformation is applied to the latent space (Quessard et al., 2020;
Worrall et al., 2017b; Kulkarni et al., 2015; Lenc & Vedaldi, 2016; Cohen &
Welling, 2014; Falorsi et al., 2018). Among these generative coding methods,
transforming autoencoder (Hinton et al., 2011) is a closely related early work,
which in addition to equivariance, seeks to represent the part-whole hierarchy
in the data. What additionally contrasts our work with the follow-up works
on capsule networks (Sabour et al., 2017; Lenssen et al., 2018) is that SymReg
is agnostic to the choice of architecture and training. We only rely on our
objective function to enforce equivariance.

Since we consider learning equivariant representations by self-supervision,
exciting recent progress in this area is also quite relevant (Hadsell et al.,
2006; Oord et al., 2018; Chen et al., 2020b; Tian et al., 2019; He et al., 2020;

110

Zbontar et al., 2021; Ermolov et al., 2021). While the use of transformations
is prominent in these works, in many settings, the objective encourages
invariance to certain transformations, making such models useful for invariant
downstream tasks such as classification. Similar to many of these methods,
we also use transformed pairs to learn a representation, with the distinction
of learning an equivariant representation. An exception is the recent work
of Dangovski et al. (2021), which learns an equivariant representation by
separating the invariant embedding from the pose, where the relative pose is
learned through supervision. Therefore, in that work, in contrast to ours, one
needs to know the transformation that maps one input to another. When
considering the Euclidean group, SymReg preserves distances in the embedding
space under non-linear transformations of the input. This embedding should
not be confused with isometric embedding (Tenenbaum et al., 2000), where
the objective is to maintain the pairwise distances between points in the input
and the embedding space.

7.5 Discussion
In this chapter, we have developed a novel approach for learning equivariant
representations by leveraging the properties of group invariants to construct
embeddings that are regularized towards a simple linear action. Our method,
SymReg, significantly simplifies the learning process by obviating the need
for explicit group member information, which is often not readily available in
many practical applications. We show how this idea can be integrated with
deep reinforcement learning algorithms to improve their sample efficiency.

Key Challenges and Limitations: Our method assumes the availability
of data corresponding to the same action of a symmetry group across two
different starting orientations of an object, as demonstrated in the rotating
chair example. This data can typically be generated by applying the same
action to two different states of an object in interactive environments. However,
the scalability of this method becomes problematic when these actions are
continuous. This challenge complicates the generation and management of the
required transformations, raising concerns about the practical implementation
and scalability of the method in broader applications.

Moreover, the current framework predominantly assumes the Euclidean
group to implement SymReg. This assumption may not always be optimal or
appropriate depending on the underlying physical or geometrical properties
of the data, potentially limiting the applicability of our method.

111

Future Research Directions: Future research should focus on developing
automated methods for detecting the most suitable Lie group based on the
data’s inherent characteristics. This would enable the method to adaptively
select the appropriate group, enhancing both the accuracy and the appli-
cability of the learned representations. Addressing the challenges posed by
continuous actions or symmetry transformations is crucial for extending the
utility of SymReg to more dynamic and less controlled environments. Re-
search into more efficient algorithms for generating and handling continuous
transformation data will be essential.

Extending the applicability of SymReg to include a wider variety of Lie
groups, such as symmetric groups or combinations thereof with Euclidean
groups, could significantly broaden its utility. This extension would allow for
a more nuanced representation of complex interactions and transformations
across different domains. Further investigation is needed to develop and
refine the objectives or mechanisms integrated within SymReg to prevent
the collapse of representations. Exploring regularization techniques or loss
functions that maintain the diversity and richness of the embeddings will be
crucial for ensuring robust and meaningful equivariant representations.

By addressing these challenges and exploring these avenues, we can signif-
icantly enhance SymReg making it capable of handling the complexities of
real-world data in a principally efficient manner.

112

8
Learning representations using

Koopman Theory

Although Chapter 6 and Chapter 7The ability to predict the outcome of
an agent’s action over long horizons is a crucial unresolved challenge in
Reinforcement Learning (RL) (Sutton & Barto, 2018; Mnih et al., 2015a;
Silver et al., 2017a; Mnih et al., 2016). This is especially important in model-
based RL and planning, where deriving a policy from the learned dynamics
models allows one to efficiently accomplish a wide variety of tasks in an
environment (Du & Narasimhan, 2019; Hafner et al., 2020; Sikchi et al., 2021;
Hansen et al., 2022; Schrittwieser et al., 2020; Jain et al., 2022). In fact,
state-of-the-art model-free techniques also rely on dynamics models to learn a
better representation for downstream value prediction tasks (Schwarzer et al.,
2020). Thus, obtaining accurate long-range dynamics models in the presence
of input and control is crucial.

In this chapter, we leverage techniques and perspectives from Koopman
theory (Koopman, 1931; Mauroy et al., 2020; Koopman & Neumann, 1932;
Brunton et al., 2021) to address this key problem in long-range dynamics
modeling of interactive environments. This chapter provides a unifying
perspective over several existing directions on stabilizing gradients through

113

time, including long-range sequence modeling using state-space models (Gu
et al., 2020, 2022b,a; Gupta et al., 2022), the use of unitary matrices (Arjovsky
et al., 2016) and certain lie group representations (Mondal et al., 2022) in latent
dynamic models. We arrive at this formulation of structuring representations
from dynamical systems while exploring methods to speed up dynamics
modeling technique introduced in Chapter 4.

The application of Koopman theory allows us to linearise a nonlinear
dynamical system by creating a bijective mapping to linear dynamics in a
possibly infinite dimensional space of observables.1

ds
dt

= f(s, a)st st+n

xt

MLP

a
xt+1 xt+n

gθ

dθ dθ

gθ

xt
̂xt+1 ̂xt+n

dθ dθ

gθgθ

K, L

a

̂x = Kx + La

K =
λ1 0 0
0 ⋱ 0
0 0 λm

Model Long
Horizons

Parallel and
fast prediction

Control over
gradients

while BPTT

Simple linear latent
dynamics!

Non-linear latent
dynamics

Complex
dynamical system

MLP-based dynamics model

Koopman-based dynamics model

Figure 8.1: A comparison of our Koopman-based linear dynamics model with a non-linear
MLP-based dynamics model. The Diagonal Koopman formulation allows for modeling
longer horizons efficiently with control over gradients. Here BPTT stands for Backpropa-
gation Through Time.

Conveniently, a deep neural network can learn to produce such a mapping,
enabling a reliable approximation of the non-linear dynamics in the finite
dimension of a linear latent space so that only a finite subset of the most
relevant (complex-valued) Koopman observables need to be tracked.

1The term observables can be misleading as it refers to the latent space in the machine
learning jargon.

114

We show that this linearization has two major benefits: 1) The eigenvalues
of the linear latent-space operator are directly related to the stability and
expressive power of the controlled dynamics model. 2) This can help to avoid
a computational bottleneck due to the sequential nature of dynamics. This
is achieved by a reformulation using convolution and diagonalization of the
linear operator. In other words, one can perform efficient parallel training
of the model over time steps, despite dealing with a controlled dynamical
system.

Our experimental results in offline-RL datasets demonstrate the effective-
ness of our approach for reward and state prediction over a long horizon. In
particular, we report competitive results against dynamics modeling baselines
that use Multi-Layer Perceptrons (MLPs), Gated Recurrent Units (GRUs),
Transformers and Diagonal State Space Models (Gu et al., 2022a) while
being significantly faster. Finally, we also present encouraging results for
model-based planning and model-free RL with our Koopman-based dynamics
modeling.

8.1 Background
8.1.1 Koopman Theory for Dynamical Systems
In the context of non-linear dynamical systems, the Koopman operator, a.k.a.
the Koopman-von Neumann operator, is a linear operator for studying the
system’s dynamics. The Koopman operator is defined as a linear transforma-
tion that acts on the space of functions or observables of the system, known
as the observables space F . For a non-linear discrete or continuous time
dynamical system

xt+1 = F (xt) or
dx

dt
= f(x) (8.1)

the Koopman operator K : F → F , is defined as Kh ∼= h ◦ F where F is the
set of all functions or observables that form an infinite-dimensional Hilbert
space. In other words, for every function h : X → R belonging to F , where
xt ∈ X ⊂ Rn, we have

(Kh)(xt) = h(F (xt)) = h(xt+1).

The infinite dimensionality of the Koopman operator presents practical limi-
tations. Addressing this, we seek to identify a subspace G ⊂ F , spanned by a

115

finite set of observables h1, . . . , hm where typicallym >> n, that approximates
invariance under the Koopman operator.

Constraining the Koopman operator on this invariant subspace results
in a finite-dimensional linear operator K ∈ Cm×m, called the Koopman
matrix, which satisfies h(xt+1) = Kh(xt). Usually, the base observation
functions {hi}i are hand-crafted using knowledge of the system’s underlying
physics. However, data-driven methods have recently been proposed to
learn the Koopman operator by representing the base observations or their
eigenfunction basis using deep neural networks, where a decoder reconstructs
the input from linear latent dynamics (e.g., Lusch et al., 2018; Champion
et al., 2019). Linearizing the dynamics allows for closed-form solutions for
the predictions of the dynamical system, as well as stability analysis based
on the eigendecomposition of the Koopman matrix (Fan et al., 2022; Yi &
Manchester, 2023).

The observation functions {hi}i spanning an invariant subspace can always
be chosen to be eigenfunctions {ϕi}i of the Koopman operator, i.e., Kϕi(x) =
λiϕi(x), ∀x. With this choice of observation functions, the Koopman matrix
becomes diagonal,

KD = diag(λ1, . . . , λm), λi ∈ C ∀i. (8.2)

By using a diagonal Koopman matrix, we are effectively offloading the
task of learning the suitable eigenfunctions of the Koopman operator that
form an invariant subspace to the neural network encoder h. Additionally, for
a continuous time input, to be able to model higher-order frequencies in the
eigenspectrum and provide better approximations, one could adaptively choose
the most relevant eigenvalues and eigenfunctions for the current state (Lusch
et al., 2018). This means h(xt+1) = KD(λ(h(xt)))h(xt), where λ : G → Cm

can be a neural network.

8.1.2 Approximate Koopman with Control Input
The Koopman operator can be extended to non-linear control systems, where
the state of the system is influenced by an external control input ut such
that xt+1 = F (xt, ut) or dx

dt
= f(x, u). Simply treating the pair (x, u) as the

input x, the Koopman operator becomes (Kh)(xt, ut) = h(F (xt, ut), ut+1) =
h(xt+1, ut+1). If the effect of the control input on the system’s dynamics is

116

linear, i.e., the control affine setting, we have

f(x, u) = f0(x) +
m∑
i=1

fi(x)ui.

assuming a finite number of eigenfunctions. For such control-affine system,
one could show that the Koopman operator is bilinearized (Brunton et al.,
2021; Bruder et al., 2021):

h(xt+1) = K(u)h(xt) = (K0 +
m∑
i=1

uiKi)h(xt).

More generally, one could make the Koopman operator a function of ut, so
that the resulting Koopman matrix satisfies h(xt+1) = K(ut)h(xt).

Connections to Symmetry-based methods. This is the approach taken
by (Weissenbacher et al., 2022) to model symmetries of dynamics in offline RL.
When combined with the diagonal Koopman matrix of Eq. (8.2), and fixed
modulus of the complexed valued eigenspectrum |λi| = 1 ∀i, the Koopman
matrix becomes a product of matrix representation of SO(2). This resulting
latent dynamics model, resembles a special setting of the symmetry-based
approach of Chapter 6, where group representations are used to encode
states and state-dependent actions. The latent representation can be both
represented as complex numbers or their equivalent matrix representation
which combines rotation matrices with a scaling factor given by the magnitude
of the complex number.

An alternate approach to approximating the Koopman operator with a
control signal assumes a decoupling of state and control observables h(x, u) =
[h(x), f(u)] = [h1(x), ..., hm(x), f1(u), ..., fn(u)] (Brunton et al., 2021; Bruder
et al., 2019). This gives rise to a simple linear evolution:

h(xt+1) = Kh(xt) + Lf(ut) (8.3)

where K ∈ Cm×m and L ∈ Cm×l are matrices representing the linear dynamics
of the state observables and control input, respectively. We build on this
approach in our proposed methodology. Although, as shown in (Brunton
et al., 2016, 2021; Bruder et al., 2019), even assuming a linear control term
Lut can perform well in practice, we use neural networks for both f and
h. Our rationale for choosing this formulation is that the additive form of

117

Eq. (8.3) combined with the diagonalized Koopman matrix of Eq. (8.2), enable
fast parallel training across time-steps using a convolution operation where
the convolution kernel can be computed efficiently. Moreover, this setting is
amenable to the analysis of gradient behaviour, as discussed in Section 8.2.2.
For a more comprehensive overview of Koopman theory in the context of
controlled and uncontrolled dynamics, we direct readers to (Brunton et al.,
2021; Mauroy et al., 2020).

8.2 Dynamics Model

+× ×

K̄ ∈ ℂm×m xt ∈ ℂmxt ∈ ℂm

ut ∈ ℂn

L̄ ∈ ℂm×n ut ∈ ℂn xt+1 ∈ ℂm

Current state
embedding

Next state
embedding

Current action
embedding

Diagonal Koopman
matrix

st

at

at+1 at+2

State

Encoder

Action

Encoder

Action

Encoder

Action

Encoder

+ =i

} }

⋯

⋯

Dynamics

Block

Dynamics

Block

Dynamics

Block

⋯

⋯
+= i

} }

Koopman
Dynamics
Block

Koopman
Dynamics
Model

Figure 8.2: A schematic of the latent Koopman dynamics model. Both actions and initial
state embedding are encoded into a latent space in complex (C) domain before passing
through the Koopman dynamics block.

8.2.1 Linear Latent Dynamics Model
Our task in dynamics modeling is to predict the sequence of future states
st+1,, st+τ given a starting state st and some action sequence at, at+1, ..., at+τ−1,
assuming a Markovian system. Following the second approach described in
Section 8.1.2, we assume that state and control observables are decoupled,
and use neural network encoders2 to encode both states and actions

xt = hθ(st) and ut = fϕ(at). (8.4)

2We use a CNN for pixel input and an MLP for state-based input and actions.

118

Due to this decoupling, the continuous counterpart of latent space dynamics
Eq. (8.3) is

dx

dt
= Kx(t) + Lu(t), (8.5)

and the solution is given by x(s) = eKsx(0) +
∫ s
0
eK(s−t)Lu(t)dt where eKs

is a matrix exponential. One could discretize this to get x̂t+1 = K̄xt + L̄ut,
where K̄ and L̄ are obtained by Zero-Order Hold (ZOH) discretization of the
continuous-time equation (Iserles, 2009):

K̄ = exp(∆tK) L̄ = (K)−1(exp(∆tK)− 1)L

In practice, we assume that observations are sampled uniformly in time and
use a learnable time step parameter ∆t. As x̂t+1 = K̄xt + L̄ut, we can unroll
it to get future predictions up to τ time steps that is:

x̂t+1 = K̄xt + L̄ut

x̂t+2 = K̄x̂t+1 + L̄ut+1 = K̄2xt + K̄L̄ut + L̄ut+1

x̂t+3 = K̄x̂t+2 + L̄ut+2 = K̄3xt + K̄2L̄ut + K̄L̄ut+1 + L̄ut+2

· · ·

x̂t+τ = K̄τxt + K̄τ−1L̄ut + K̄τ−2L̄ut+1 + · · ·+ L̄ut+τ−1

Writing the above equations in a matrix form we get:

[x̂t+1, · · · , x̂t+τ] = [K̄, · · · , K̄τ]xt + [ct, · · · , ct+τ−1]

I K̄ . . . K̄τ−1

0 I · · · K̄τ−2

...
...

0 0 · · · I

︸ ︷︷ ︸

Γ

,

(8.6)

where ct+k = L̄ut+k, Γ encodes the effect of each input on all future
observables, and theˆ in x̂ distinguishes the prediction from the ground truth
observable x.

We can then recover the predicted state sequence by inverting the function
hθ, using a decoder network ŝt+k = dξ(x̂t+k). Loss functions in both input and
latent space can be used to learn the encoder, decoder, and latent dynamics

119

model. We refer to these loss functions as the Koopman consistency loss and
the state-prediction loss, respectively:

Lconsistency =
τ∑
k=1

∥x̂t+k − xt+k∥22 Lstate-pred =
τ∑
k=1

∥dξ(x̂t+k)− st+k∥22

(8.7)

8.2.2 Diagonalization, Efficiency and Stability of the
Koopman Operator

Since the set of diagonalizable matrices is dense in Cm×m and has a full
measure, we can always diagonalize the Koopman matrix as shown in Eq. (8.2).
Next, we show that this diagonalization can be leveraged for efficient and
parallel forward evolution and training.

To unroll the latent space using Eq. (8.6) we need to perform matrix
exponentiation and dense multiplication. Using a diagonal Koopman matrix
K̄ = diag(λ̄1, . . . , λ̄m), this calculation is reduced to computing an m× (τ +1)
complex-valued Vandermonde matrix Λ, where Λi,j = λ̄ji , and doing a row-
wise circular convolution of this matrix with a sequence of vectors. We use
the property of matrix exponential of diagonal matrices. In particular, we
have K̄ = diag(λ̄1, . . . , λ̄m) implies that K̄τ = diag(λ̄τ1, . . . , λ̄

τ
m). Recall that

x, c ∈ Cm are complex vectors. We use superscript to index their elements
– i.e., xt = [x1t , . . . , x

m
t]. With this notation, we get that for i-th index of

predicted vectors x̂t+k s the following equations hold:

x̂it+1 = λ̄ix
i
t + cit

x̂it+2 = λ̄i
2
xit + λ̄ic

i
t + cit+1

· · ·
x̂it+τ = λ̄τi x

i
t + λ̄τ−1

i cit + λ̄τ−2
i cit+1 + · · ·+ cit+τ−1

The above equations can be denoted by an expression using the circular
convolution operator given by:

[x̂it+1, . . . , x̂
i
t+τ] = [λ̄i, . . . , λ̄

τ
i]x

i
t + [1, λ̄i, . . . , λ̄

τ−1
i]⊛ [cit, ..., c

i
t+τ−1] (8.8)

where ⊛ is circular convolution with zero padding. The convolution can be
efficiently computed for longer time steps using the Fast Fourier Transform.
(Brigham, 1988)

120

Gradients Through Time

We show how we can control the behavior of gradients through time by
constraining the real part of the eigenvalues of the Diagonal Koopman matrix.
Let µ and ω refer to the real and imaginary part of the Koopman eigenvalues
– that is λj = µj + iωj.

Theorem 8.2.1. For every time step k ∈ {1, .., τ} in the discrete dynamics,
the norm of the gradient of any loss at k-step given by Lk with respect to
latent representation at time step t given by xt is a scaled version of the norm
of the gradient of the same loss by xt+k, where the scaling factor depends on
the exponential of the real part of the Koopman eigenvalues, that is:

|∂Lk
∂xjt
| = ek∆tµj | ∂Lk

∂xjt+k
| ∀j ∈ {1, ..,m}.

and similarly, for all l ≤ k, the norm of the gradient of Lk with respect to
the control input at time step t+ l− 1 given by is cjt+l−1 is a scaled version of
the norm of the gradient of Lk by xt+k, where the scaling factor depends on
the exponential of the real part of the Koopman eigenvalues, that is:

| ∂Lk
∂cjt+l−1

| = e(k−l)∆tµj | ∂Lk
∂x̂jt+k

| ∀j ∈ {1, ..,m}

Proof. We now provide a proof sketch of Theorem 3.1. As λj = µj + iωj,
discretizing the diagonal matrix (using ZOH) and taking its k-th power gives
us K̄k

j = ek∆tµjeik∆tωj . Using this we can write

x̂jt+k = K̄k
j x

j
t +

k∑
l=1

K̄k−l
j cjt+l−1

Now applying the chain rule, we get derivatives of the loss with respect to xjt
and cjt+l−1:

=⇒ ∂Lk
∂xjt

=
∂x̂jt+k

∂xjt

∂Lk
∂x̂jt+k

= K̄k
j

∂Lk
∂x̂jt+k

= ek∆tµjeik∆tωj
∂Lk
∂x̂jt+k

=⇒ ∂Lk
∂cjt+l−1

=
∂x̂jt+k

∂cjt+l−1

∂Lk
∂x̂jt+k

= K̄k−l
j

∂Lk
∂x̂jt+k

= e(k−l)∆tµjei(k−l)∆tωj
∂Lk
∂x̂jt+k

As |eiθ| = 1, we get the result of partial derivatives given in Theorem 3.1.

121

The theorem implies that the amplitude of the gradients from a future
time step scales exponentially with the real part of each diagonal Koopman
eigenvalue. We use this theorem for better initialization of the diagonal
Koopman matrix as explained in the next section.

Initialization of the Eigenspectrum

The imaginary part of the eigenvalues of the diagonal Koopman matrix
captures different frequency modes of the dynamics. Therefore, it is helpful
to initialize them using increasing order of frequency, that is, ωj := αjπ, for
some constant α, to cover a wide frequency range.

From Theorem 8.2.1, we know that the real part of the eigenvalues impacts
the gradient’s behavior through time. To avoid vanishing gradients and
account for prediction errors over longer horizons, one could eliminate the
real part µj := 0. This choice turns the latent transformations into blocks
of 2D rotations (Mondal et al., 2022). This is also related to using Unitary
Matrices to avoid vanishing or exploding gradients in Recurrent Neural
Networks (Arjovsky et al., 2016). However, intuitively, we might prefer to
prioritize closer time steps. This can be done using small negative values
e.g., µj ∈ {−0.1,−0.2,−0.3}. An alternative to having a fixed real part is to
turn it into a bounded learnable parameter µj ∈ [−0.3,−0.1]. We empirically
found µj := −0.2 ∀j, and ωj := jπ to be good choices and use this as our
default initialization.

8.3 Dynamics modeling in RL and Planning
8.3.1 Forward dynamics modeling in RL
Dynamics models have been instrumental in attaining impressive results
on various tasks such as Atari (Schrittwieser et al., 2020; Hafner et al.,
2020) and continuous control (Hafner et al., 2020; Jiang et al., 2020; Sikchi
et al., 2021; Lowrey et al., 2019). By building a model of environment
dynamics, model-based RL can generate trajectories used for training the RL
algorithm. This can significantly reduce the sample complexity in comparison
to model-free techniques. However, in model-based RL, inaccurate long-term
predictions can generate poor trajectory rollouts and lead to incorrect expected
return calculations, resulting in misleading policy updates. Forward dynamics
modeling has also been successfully applied to model-free RL to improve
the sample efficiency of the existing model-free algorithms. These methods
use it to design self-supervised auxiliary losses for representation learning

122

using consistency in forward dynamics in the latent and the observation space
(Jaderberg et al., 2017; Schwarzer et al., 2020; Srinivas et al., 2020).

8.3.2 Koopman Self-Predictive Representations
To avoid overconstraining the latent space using the dynamics model, SPR
uses projection heads. Similarly, we encode the Koopman observables using a
projection layer above the representations used for Q-learning. Using st for
the input pixel space, the representation space for the Q-learning is given by
zt = eθ(st) where eθ is a CNN. The Koopman observables xt is produced by
encoding zt using a projector pθ such that xt = pθ(zt). Moreover, it can be
decoded into zt using the decoder dθ(x̂t). Loss functions are the prediction
loss Eq. (8.7) and TD-error

LSSL =
τ∑
k=1

∥dθ(x̂t+k)− eθ−(st+k)∥22 + ∥Qθ(zt, at)− (rt +Qθ−(eθ−(st+1), at+1))∥22.

(8.9)

Here, at+1 is sampled from the policy π. The policy is learned from the
representations using Soft Actor-Critic (SAC) (Haarnoja et al., 2018a). As
opposed to SPR, we do not use moving averages for the target encoder
parameters and simply stop gradients through the target encoders and denote
it as eθ− . Moreover, we drop the consistency term in the Koopman space in
Eq. (8.9) as we empirically observed adding consistency both in Koopman
observable (x), and Q-learning space (z) promotes collapse and makes training
unstable, resulting in a higher variance in the model’s performance.

8.3.3 Model-based Planning
Model Predictive Control (MPC) is a control strategy that uses a dynamics
model st+1 = f(st, at) to plan for a sequence of actions at, at+1, . . . , at+τ−1

that maximizes the expected return over a finite horizon.
The optimization problem is:

arg max
at:t+τ−1

E

[
t+τ−1∑
i=t

γir(si, ai)

]
(8.10)

where γ is typically set to 1, that is, there is no discounting. Heuristic
population-based methods, such as a cross entropy method (Rubinstein &
Kroese, 2004) are often used for dynamic planning. These methods perform

123

a local trajectory optimization problem, corresponding to the optimization of
a cost function up to a certain number of time steps in the future (Williams
et al., 2015, 2018; Okada & Taniguchi, 2020). In contrast to Q-learning, this
is myopic and can only plan up to a certain horizon, which is predetermined
by the algorithm.

One can also combine MPC with RL to approximate long-term returns of
trajectories that can be calculated by bootstrapping the value function of the
terminal state. In particular, methods like TD-MPC (Hansen et al., 2022)
and LOOP (Sikchi et al., 2021) combine value learning with planning using
MPC. The learned value function is used to bootstrap the trajectories that are
used for planning using MPC. Additionally, they learn a policy using the Deep
Deterministic Policy Gradient (Lillicrap et al., 2016) or Soft Actor-Critic
(SAC) (Haarnoja et al., 2018a) to augment the planning algorithm with
good proposal trajectories. Alternative search methods such as Monte Carlo
Tree search (Coulom, 2006) are used for planning in discrete action spaces.
The performance of the model-based planning method heavily relies on the
accuracy of the learned model.

8.3.4 Koopman TDMPC
TDMPC uses an MLP to design a Task-oriented Latent Dynamics (TOLD)
model, which learns to predict the latent representations of the future time
steps. The learnt model can then be used for planning. To stabilize training
TOLD, the weights of a target encoder network hθ− , are updated with the
exponential moving average of the online network hθ.

Since dynamics modeling is no longer the only objective, in addition to the
latent consistency of Eq. (8.7), the latent xt is also used to predict the reward
and Q-function, which takes the latent representations as input. Hence, the
dynamics model learns to jointly minimize the following:

LTOLD = c1

τ∑
k=1

λk∥x̂t+k − hθ−(st+k)∥22 + c2

τ∑
k=0

λk∥Rθ(x̂t+k, at+k)− rt+k∥22

+ c3

τ∑
k=0

λk∥Qθ(x̂t+k, at+k)− yt+k∥22 (8.11)

where Rθ, πθ, Qθ are respectively reward, policy and Q prediction networks,
where yt+k = rt+k + Qθ−(x̂t+k+1, πθ(x̂t+k)) is the 1-step bootstrapped TD
target. Moreover, the policy network is learned from the latent representation

124

(a) hopper-v2 (b) walker2d-v2 (c) halfcheetah-v2

Figure 8.3: Forward state and reward prediction error in Offline Reinforcement Learning
environments. We consider five dynamics modeling techniques and perform this prediction
task over a horizon of 100 environment steps. The results are over 3 runs. Our
Koopman-based method is competitive with the best performing GRU baseline while being
2× faster. See (Mondal et al., 2023) for exact numerical values.

by maximizing the Q value at each time step. This additional policy network
helps to provide the next action for the TD target and a heuristic for planning.
For details on the planning algorithm and its implementation, see (Hansen
et al., 2022).

8.4 Experiments
8.4.1 Long-Range Dynamics Modeling with Control
We model the non-linear controlled dynamics of MuJoCo environments (Todorov
et al., 2012) using our Koopman operator. Our goal is to understand how well
a simple linear dynamics model in the latent space, introduced in Section 8.2.1,
can capture the complex dynamics of these interactive environments. We
choose a standard MLP-based latent non-linear dynamics model with two
linear layers followed by a ReLU non-linearity as one of our baselines. To make
it easier to compare with Koopman dynamics model, we use state embed-
dings of the same dimensionality using gθ, which is an MLP, as described in
Section 8.2.1. This embedding is then fed to the MLP-based latent dynamics
model or the diagonal Koopman operator. This approach is widely used in RL

125

Figure 8.4: Training speed in iterations/second (↑) for the state prediction task using
different dynamics model on halfcheetah-expert-v2. Each iteration consists of one
gradient update of the entire model using a mini-batch of 256 in A100 GPU.

for dynamics modeling (Sikchi et al., 2021; Hansen et al., 2022; Schrittwieser
et al., 2020; Schwarzer et al., 2020). To further compare our model with more
expressive alternatives that can be trained in parallel, we design a causal
Transformer (Vaswani et al., 2017b; Chen et al., 2021) based dynamics model,
which takes a masked sequence of state-actions and outputs representations
that are used to predict next states and rewards.3 Following the success of
(Hafner et al., 2020), we also design a GRU-based dynamics model that also
takes a masked sequence of state-actions to output representations for state
and reward prediction. Finally, we use the same strategy to also design a
DSSM-based (Gu et al., 2022a) dynamics model. To ensure a fair comparison
in terms of accuracy and runtime, we maintain an equal number of trainable
parameters for all the aforementioned models. (see (Mondal et al., 2023) for
more details)

For the forward dynamics modeling experiments, we use the D4RL (Fu
et al., 2020) dataset, which is a popular offline-RL environment. We select
offline datasets of trajectories collected from three different popular Gym-
MuJoCo control tasks: hopper, walker, and halfcheetah. These trajectories
are obtained from three distinct quality levels of policies, offering a range
of data representing various levels of expertise in the task: expert, medium-
expert, and full replay. We divide the dataset of 1M samples into 80:20

3All the states after the starting state are masked, but actions are fed to the model for
all future time-steps.

126

splits for training and testing, respectively. To train the dynamics model,
we randomly sample trajectories of length τ from the training data, where
τ is the horizon specified during training. We test our learned dynamics
model for a horizon length of 100 by randomly sampling 50,000 trajectories of
length 100 from the test set. We use our learned dynamics model to predict
the ground truth state sequence given the starting state and a sequence of
actions.

Training stability We can only train the MLP-based dynamics model for
10-time steps across all environments. Using longer sequences often results
in exploding gradients and instability in training due to backpropagation
through time (Sutskever, 2013). The alternative of using tanh in MLP-based
models can lead to vanishing gradients. In contrast, our diagonal Koopman
operator handles long trajectories without encountering vanishing or exploding
gradients, in agreement with our discussion in Section 8.2.2.

State and Reward Prediction

In Fig. 8.3, we evaluate our model’s accuracy in state and reward prediction
over long horizons involving 100 environment steps. For this experiment, we
add a reward predictor and jointly minimize the reward prediction loss and
the state prediction loss. We set the weight of the consistency loss in the
latent space to 0.001. We see that for longer horizon prediction, our model is
considerably better in predicting rewards and states accurately for hopper,
walker, and halfcheetah in comparison to MLP, Transformer and DSSM-
based model while being competitive with GRU-based model. Furthermore,
Fig. 8.4 empirically verifies that our proposed Koopman dynamics model
is significantly faster than an MLP, GRU, DSSM and transformer-based
dynamics model. The results also reveal the trend that our model’s relative
speed-up over baselines grows with the length of the horizon.

8.4.2 Koopman Dynamics Model for RL and Planning
We now present promising results from integrating the diagonal Koopman
model into two areas: (I) model-based planning, and (II) model-free reinforce-
ment learning (RL). In the latter, the dynamics model enhances representation
learning. Both approaches aim to solve continuous control tasks in a data-
efficient manner. We provide a brief summary of these methods and their
modifications with the Koopman dynamics model in Section 8.3. While the
same dynamics model can also be used for (III) model-based RL, we leave
that direction for future work.

127

Figure 8.5: Comparison of our Koopman-based dynamics model (with a horizon of 20)
and an MLP-based dynamics model of vanilla TD-MPC (Hansen et al., 2022). The results
are over 5 random seeds for each environment. Higher Mean & IQM and lower Optimality
Gap is better.

Figure 8.6: Comparison of vanilla SAC (Haarnoja et al., 2018a) and its integration with an
MLP-based (SPR) and a Koopman-based dynamics model for incorporating self-predictive
representations in the DeepMind Control Suite. The results are over 5 random seeds for
each environment. Higher Mean & IQM and lower Optimality Gap is better.

Evaluation Metric To assess the performance of our algorithm, we cal-
culate the average episodic return after training and normalize it with the
maximum score, i.e., 1000. However, due to significant variance over different
runs, relying solely on mean values may not provide reliable metrics. To
address this, (Agarwal et al., 2021) suggests using bootstrapped confidence
intervals (CI) with stratified sampling, which is particularly suitable for small
sample sizes, such as the five runs per environment in our case. By utilizing
bootstrapped CI, we obtain interval estimates indicating the range within
which an algorithm’s aggregate performance is believed to fall and report the
Interquartile Mean (IQM). The IQM represents the mean across the middle
50% of the runs, providing a robust measure of central tendency. Furthermore,
we calculate the Optimality Gap (OG), which quantifies the extent to which
the algorithm falls short of achieving a normalized score of 1.0. 4

4A smaller Optimality Gap indicates superior performance.

128

Model-Based Planning

We utilize TD-MPC (Hansen et al., 2022) as the baseline for our model-based
planning approach. TD-MPC combines the benefit of a model-free approach
in long horizons by learning a value function while using an MLP-based “Task-
Oriented Latent Dynamics” (TOLD) model for planning over shorter horizons.
To assess the effectiveness of our proposed dynamics model, we replace TOLD
with our diagonal Koopman operator. Subsequently, we trained the TD-MPC
agent from scratch using this modified Koopman TD-MPC approach. See
Section 8.3.4 for details on this adaptation. To evaluate the performance
of our variation, we conducted experiments in four distinct environments:
Quadruped Run, Quadruped Walk, Cheetah Run, and Acrobot Swingup.
We run experiments in the state space and compare them against vanilla
TD-MPC.

Our Koopman dynamics model was trained with a horizon of 20 time
steps. We observe that TD-MPC suffers from training instability, performance
degradation and high variance when using 20-time steps. Consequently, we
opted to use a horizon of 5-time steps for the vanilla approach. Fig. 8.5
suggests that the Koopman TD-MPC outperforms the MLP-based baseline
while being more stable.

Model-Free RL

Current data-efficient model-free RL approaches like SPR;(Schwarzer et al.,
2020) use dynamics modeling as an auxiliary task to improve representation
learning. We apply our dynamics model to this model-free RL framework,
where we use an adaptation of SPR as our baseline. This adaptation uses an
MLP-based dynamics model rather than the original CNN used in SPR in order
to eliminate the advantage of the original SPR for image inputs. SPR uses
an auxiliary consistency loss similar to Eq. (8.7), as well as augmentations
and other techniques from (Grill et al., 2020) to prevent representation
collapse. It also improves the encoder’s representation quality by making
it invariant to the transformations that are not relevant to the dynamics
using augmentation; see also (Srinivas et al., 2020; Yarats et al., 2021a). To
avoid overconstraining the latent space using the dynamics model, SPR uses
projection heads. Similarly, we encode the Koopman observables using a
projection layer above the representations used for Q-learning. We provide
more details on the integration of the Koopman dynamics model into the
SPR framework in Section 8.3.2.

129

We perform experiments on five different environments from the DeepMind
Control (DMC) Suite (Tunyasuvunakool et al., 2020; Tassa et al., 2018) (Ball
in Cup Catch, Cartpole Swingup,Cheetah Run, Finger Spin, and Walker
Walk) in pixel space, and compare it with an MLP-based dynamics model
(SPR) and no dynamics model, i.e., SAC (Haarnoja et al., 2018a) as baselines.
Figure 8.6 demonstrates that for a horizon of 5 time steps Koopman-based
model outperforms the SAC plus MLP-based dynamics model baseline while
being more efficient.

8.5 Related Work
Diagonal state space models (DSSMs). DSSMs (Gu et al., 2022a;
Gupta et al., 2022; Mehta et al., 2022) have been shown to be an efficient
alternative to Transformers for long-range sequence modeling. DSSMs with
certain initializations have been shown (Gu et al., 2022a) to approximate
convolution kernels derived for long-range memory using the HiPPO (Gu et al.,
2020) theory. This explains why DSSMs can perform as well as structured
state space models (S4) (Gu et al., 2022b), as pointed out by (Gupta et al.,
2022). Inspired by the success of gating in transformers (Hua et al., 2022),
(Mehta et al., 2022) introduced a gating mechanism in DSS to increase its
efficiency further.

While our proposed Koopman model may look similar to a DSSM (Gu
et al., 2022a; Gupta et al., 2022; Mehta et al., 2022), there are four major
differences. First, our model is specifically derived for dynamics modeling
with control input using Koopman theory and not for sequence or time series
modeling. Our motivation is to make the dynamics and gradients through
time stable, whereas, for DSSMs, it is to approximate the 1D convolution
kernels derived from HiPPO (Gu et al., 2020) theory. Second, a DSSM gives
a way to design a cell that is combined with non-linearity and layered to get a
non-linear sequence model. In contrast, our Koopman-based model shows that
simple linear latent dynamics can be sufficient to model complex non-linear
dynamical systems with control. Third, DSSMs never explicitly calculate the
latent states and even ignore the starting state. Our model works in the state
space, where the starting state is crucial to backpropagate gradients through
the state encoder. Fourth, a DSSM learns structured convolution kernels for
1D to 1D signal mapping so that for higher dimensional input, it has multiple
latent dynamics models running under the hood, which are implemented as
convolutions. In contrast to this, our model runs a single linear dynamics

130

model for any dimensional input.
Probabilistic latent spaces. Several early papers use approximate infer-

ence with linear and non-linear latent dynamics so as to provide probabilistic
state representations (Haarnoja et al., 2016; Becker et al., 2019; Shaj et al.,
2021; Hua et al., 2022; Fraccaro et al., 2017). A common theme in several
of these articles is the use of Kalman filtering, using variational inference
or MCMC, for estimating the posterior over the latent and mechanisms for
disentangled latent representations. While these methods vary in their com-
plexity, scalability, and representation power, similar to an LSTM or a GRU,
they employ recurrence and, therefore, cannot be parallelized.

Koopman Theory for Control. The past work in this area has solely
focused on learning the Koopman operator or discovering representations
for Koopman spectrum for control (Shi & Meng, 2022; Watter et al., 2015).
(Korda & Mezić, 2018) extends the Koopman operator to controlled dynamical
systems by computing a finite-dimensional approximation of the operator.
Furthermore, they demonstrate the use of these predictors for model predictive
control (MPC). (Han et al., 2020) tasks a data-driven approach to use neural
networks to represent the Koopman operator in a controlled dynamical
system setting. (Kaiser et al., 2021) introduces a method using Koopman
eigenfunctions for effective linear reformulation and control of nonlinear
dynamical systems. (Song et al., 2021) proposes deep Koopman reinforcement
learning that learns control tasks with a small amount of data. However,
none of these works focus on training speed and stability for predicting longer
horizons.

8.6 Discussion
Dynamics modeling has a key role to play in sequential decision-making: at
training time, having access to a model can lead to sample-efficient training,
and at deployment, the model can be used for planning. Koopman theory is
an attractive foundation for building such a dynamics model in Reinforcement
Learning. The present work shows that models derived from this theoretical
foundation can be made computationally efficient. We also demonstrate how
this view gives insight into the stability of learning through gradient descent
in these models. Empirically, we show the remarkable effectiveness of such an
approach in long-range dynamics modeling and provide some preliminary yet
promising results for model-based planning and model-free RL.

131

Limitations and Future work Although our proposed Koopman-based
dynamics model has produced promising results, our current treatment has
certain limitations that motivate further investigation. Our current model
is tailored for deterministic environments, overlooking stochastic dynamics
modeling. We intend to expand our research in this direction, based on
developments around stochastic Koopman theory (Mezić, 2005; Wanner &
Mezic, 2022), where Koopman observables become random variables, enabling
uncertainty estimation in dynamics. Secondly, although our state prediction
task yielded impressive results, we have identified areas for further growth,
particularly in its applications to RL and planning.

We hypothesize that the distribution shift during training and the objective
change in training and evaluation hurt the performance of our Koopman
dynamics model. We also plan to conduct a more comprehensive study
involving a wider range of tasks and environments. Additionally, we aim to
explore the compatibility of our model with different reinforcement learning
algorithms to showcase its adaptability. Finally, expanding the model’s
application to model-based RL could unlock significant benefits. By leveraging
the model’s predictive capabilities to simulate future states and rewards, it’s
possible to enhance policy learning with fewer real-world interactions, leading
to more sample-efficient algorithms.

Addressing these points would not only improve the model’s performance
and robustness but also broaden its applicability across different domains and
settings in reinforcement learning and control tasks.

132

Part IV

Concluding Remarks

133

9
Conclusion and Future Work

This thesis leverages symmetrical and structural properties inherent in in-
teractive environments to enhance Deep Reinforcement Learning (DRL). It
provides a novel perspective by integrating the mathematical concept of
symmetry groups with practical DRL applications, thus addressing fundamen-
tal challenges such as sample inefficiency and generalization across different
environmental transformations.

A critical aspect discussed extensively across the chapters is the principle
of equivariance—the ability of a model to handle changes in input without
losing the essence of the information processed. This property has been
effectively applied to the design of neural network architectures, enabling
them to maintain consistent outputs despite transformations in input data.
This approach mirrors cognitive abilities in humans, such as adaptation to
solving a problem in different orientations, suggesting a cognitively inspired
angle to AI agent development that could lead to more intuitive and efficient
AI systems.

The first half of the thesis demonstrates how to build these equivariant
models when the symmetry group and its action on the input are known. It
not only underscores the role of equivariant networks in improving DRL but
also explores the area of equivariant model design. The thesis provides a novel,

134

efficient, and scalable technique to incorporate equivariance into any neural
network. Furthermore, it extends this idea to scenarios where equivariance
can be built post-training, making equivariant model design more practical
in the era of large foundation models. These contributions offer significant
insights into enhancing the sample efficiency and generalization capabilities
of existing DRL algorithms when the symmetry of the problem is known.

The second half of the thesis tackles the more challenging scenario where
the symmetry group or its action on the input data is unknown. It intro-
duces novel loss function-based techniques to learn representations that are
equivariant and structured using the linear action of the symmetry group.
The experiments demonstrate that this can be a useful inductive bias while
training these DRL agents, extending existing self-supervised learning or
world modeling techniques that augment RL objectives. Additionally, the
integration of Koopman Theory for dynamic modeling represents another
significant stride made by this thesis. By employing this theoretical frame-
work, the thesis showcases how linearizing the dynamics in the representation
space can predict the environment’s evolutions over extended periods with
improved accuracy while offering substantial benefits like stable and faster
training.

In conclusion, this thesis not only deepens the understanding and practical
applications of symmetry and structured representation learning within the
field of Deep Reinforcement Learning but also establishes a foundational
framework for Geometric Deep Learning. The implications of this research
extend beyond DRL, potentially influencing the design of more efficient and
generalizable AI systems across various domains. While realizing the full
potential of symmetry and equivariance in machine learning remains an
ongoing endeavor, this thesis provides a foundation for future researchers to
build upon, potentially catalyzing significant advancements in related areas.

The work presented here opens up several avenues for future research,
each promising to further the capabilities and applications of Deep Learning
through the lens of symmetry and equivariance.

Enhanced Symmetry Discovery One promising direction is the devel-
opment of algorithms that autonomously identify and exploit symmetries in
unstructured data. In many real-world scenarios, the underlying symmetries
are complex or unknown, making it challenging to design models that can
effectively utilize them. Creating methods that can learn these symmetries

135

directly from data would greatly broaden the applicability of DRL to more
complex environments where symmetries are not readily apparent. This could
involve leveraging unsupervised learning techniques to discover patterns and
invariances in data or employing meta-learning strategies where the model
learns to recognize and exploit symmetries across different tasks. Such ad-
vancements would enhance the adaptability of DRL agents, allowing them
to perform efficiently in a wider range of situations without explicit prior
knowledge of the environment’s structure.

Model-Agnostic Equivariance Investigating the potential of different
architecture-agnostic equivariant model design methods represents another
significant area for future research. Current approaches often require special-
ized neural network architectures to enforce equivariance, which can limit
their general applicability. Developing techniques that can imbue equivariance
into any model, regardless of its architecture, would make this powerful prop-
erty more accessible across the field of machine learning. This could involve
creating general-purpose layers or modules that can be inserted into existing
networks or designing training procedures that encourage the emergence of
equivariant representations. By making equivariant design more flexible and
widely applicable, we could enhance the performance of models on a variety of
tasks, including those in computer vision, reinforcement learning, and beyond.

Post-Training Robustness Exploring equivariant adaptation post-training
at larger scales with various foundation models is another fruitful avenue. As
large-scale pre-trained models become increasingly prevalent, finding ways
to adapt these models to generalize to new tasks or environments without
retraining from scratch is crucial. Incorporating equivariance post-training
could improve generalization and robustness, allowing models to perform
well even when faced with transformations not seen during initial training.
This could involve developing methods to fine-tune models to respect certain
symmetries or creating algorithms that adjust the representations learned by
the model to be equivariant with respect to specific groups of transformations.
Such research would not only enhance the utility of existing large models
but also contribute to more sustainable AI practices by reducing the need for
extensive retraining.

Interpretability and Explainability Further developing the connection
between cognitively inspired AI and equivariant models could significantly
enhance model transparency and understanding. By aligning AI systems

136

more closely with human cognitive processes, we can create models that are
not only more efficient but also more interpretable. Equivariant models, with
their structured approach to handling transformations, offer a natural avenue
for such alignment. Future research could focus on visualizing how these
models process and represent data, providing insights into their decision-
making processes. Additionally, exploring the theoretical underpinnings of
why certain symmetries lead to better performance could contribute to a
deeper understanding of both machine learning models and the tasks they
are applied to. This could ultimately lead to AI systems that are easier to
trust and integrate into human-centric applications.

Latent Canonicalization Designing representation learning methods that
can canonicalize the representations instead of the data itself presents another
intriguing research direction. Canonicalization involves transforming data
into a standard form, which can simplify processing and improve performance.
By focusing on the latent representations within models, we can achieve
canonicalization in a way that is more efficient and potentially more powerful.
This approach would bridge the symmetry learning aspects of the second half
of the thesis with the equivariant model design of the first half, unifying these
concepts into a cohesive framework. Future work could involve developing
algorithms that learn to map inputs to a canonical latent space where sym-
metry transformations are explicitly represented or modeled. This allows for
canonicalizing data where the transformations are not explicitly defined, for
example modeling 3D rotations in 2D images. This could have far-reaching
implications for DRL and other areas of machine learning, enabling models
to better handle variability in input data and improving generalization across
different tasks and environments.

Integration with Other Learning Paradigms Finally, integrating the
concepts of symmetry and equivariance with other learning paradigms such
as meta-learning, transfer learning, and continual learning could open new
horizons. For instance, meta-learning algorithms that can quickly adapt to
new tasks might benefit from incorporating symmetry principles to generalize
across transformations more effectively. Similarly, transfer learning could be
enhanced by transferring not just learned features but also the symmetries
and equivariances recognized by a model. Continual learning models could use
symmetry and structure-aware strategies to retain and build upon knowledge
without catastrophic forgetting. Exploring these integrations could lead to
more robust and versatile AI systems capable of learning and adapting in

137

complex, dynamic environments.
By pursuing these avenues, future research can build upon the foundation

laid by this thesis, pushing the boundaries of what is possible in Deep
Reinforcement Learning and beyond. The continued exploration of symmetry,
equivariance, and structured representation learning holds the promise of
creating AI systems that are not only more efficient and generalizable but
also more aligned with human cognition and reasoning.

138

Bibliography

Agarwal, A., Jiang, N., Kakade, S., and Sun, W. Optimistic posterior sampling
and adaptive regret in stochastic bandits. arXiv preprint arXiv:2002.12478,
2020.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare,
M. Deep reinforcement learning at the edge of the statistical precipice.
Advances in neural information processing systems, 34:29304–29320, 2021.

Anderson, B., Hy, T.-S., and Kondor, R. Cormorant: Covariant molecular
neural networks. arXiv preprint arXiv:1906.04015, 2019.

Anonymous. Learning symmetric representations for equivariant world models.
In Submitted to The Tenth International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=D637S6zBRLD.
under review.

Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution recurrent neural
networks. In International conference on machine learning, pp. 1120–1128.
PMLR, 2016.

Atzmon, M., Maron, H., and Lipman, Y. Point convolutional neural networks
by extension operators. arXiv preprint arXiv:1803.10091, 2018.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R.,
et al. Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, 2018.

Becker, P., Pandya, H., Gebhardt, G., Zhao, C., Taylor, C. J., and Neumann,
G. Recurrent kalman networks: Factorized inference in high-dimensional
deep feature spaces. In International conference on machine learning, pp.
544–552. PMLR, 2019.

139

https://openreview.net/forum?id=D637S6zBRLD

Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013a.

Bengio, Y., Léonard, N., and Courville, A. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013b.

Benton, G., Finzi, M., Izmailov, P., and Wilson, A. G. Learning invariances
in neural networks from training data. Advances in neural information
processing systems, 33:17605–17616, 2020.

Berner, C. et al. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019.

Bishop, C. M. Pattern recognition and machine learning. Springer, 2006.

Bloem-Reddy, B. and Teh, Y. W. Probabilistic symmetries and invariant
neural networks. The Journal of Machine Learning Research, 21(1):3535–
3595, 2020.

Blondel, M., Berthet, Q., marco cuturi, Frostig, R., Hoyer, S., Llinares-López,
F., Pedregosa, F., and Vert, J.-P. Efficient and modular implicit differenti-
ation, 2022. URL https://openreview.net/forum?id=TQ75Md-FqQp.

Bogatskiy, A., Anderson, B., Offermann, J., Roussi, M., Miller, D., and
Kondor, R. Lorentz group equivariant neural network for particle physics.
In International Conference on Machine Learning, pp. 992–1002. PMLR,
2020.

Bogatskiy, A., Ganguly, S., Kipf, T., Kondor, R., Miller, D. W., Murnane,
D., Offermann, J. T., Pettee, M., Shanahan, P., Shimmin, C., et al.
Symmetry group equivariant architectures for physics. arXiv preprint
arXiv:2203.06153, 2022.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von
Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al.

140

https://openreview.net/forum?id=TQ75Md-FqQp

On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Brigham, E. O. The fast Fourier transform and its applications. Prentice-Hall,
Inc., 1988.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., and Zaremba, W. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Bronstein, M. M., Bruna, J., Cohen, T., and Velicković, P. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, 2021a.

Bronstein, M. M., Bruna, J., Cohen, T., and Velicković, P. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, 2021b.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models
are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020a.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models
are few-shot learners. In Advances in neural information processing systems.
NeurIPS, 2020b.

Bruder, D., Gillespie, B., Remy, C. D., and Vasudevan, R. Modeling and
control of soft robots using the koopman operator and model predictive
control. arXiv preprint arXiv:1902.02827, 2019.

Bruder, D., Fu, X., and Vasudevan, R. Advantages of bilinear koopman
realizations for the modeling and control of systems with unknown dynamics.
IEEE Robotics and Automation Letters, 6(3):4369–4376, 2021.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discovering governing
equations from data by sparse identification of nonlinear dynamical systems.
Proceedings of the national academy of sciences, 113(15):3932–3937, 2016.

Brunton, S. L., Budisić, M., Kaiser, E., and Kutz, J. N. Modern koopman
theory for dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

141

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G.,
and Lerchner, A. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018.

Carpenter, P. A. and Eisenberg, P. Mental rotation and the frame of reference
in blind and sighted individuals. Perception & Psychophysics, 23(2):117–
124, 1978. doi: 10.3758/BF03208291. URL https://doi.org/10.3758/
BF03208291.

Caselles-Dupré, H., Garcia Ortiz, M., and Filliat, D. Symmetry-based dis-
entangled representation learning requires interaction with environments.
Advances in Neural Information Processing Systems, 32:4606–4615, 2019.

Celledoni, E., Ehrhardt, M. J., Etmann, C., Owren, B., Schönlieb, C.-B.,
and Sherry, F. Equivariant neural networks for inverse problems. Inverse
Problems, 37(8):085006, 2021.

Challita, U., Saad, W., and Bettstetter, C. Deep reinforcement learning for
interference-aware path planning of cellular-connected uavs. In 2018 IEEE
International Conference on Communications (ICC), pp. 1–7. IEEE, 2018.

Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L. Data-driven dis-
covery of coordinates and governing equations. Proceedings of the National
Academy of Sciences, 116(45):22445–22451, 2019.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., and Yu,
F. Shapenet: An information-rich 3d model repository. Technical report,
arXiv:1512.03012 [cs.GR], 2015.

Chen, C., Li, G., Xu, R., Chen, T., Wang, M., and Lin, L. Clusternet: Deep hi-
erarchical cluster network with rigorously rotation-invariant representation
for point cloud analysis. pp. 4994–5002, 2019.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel,
P., Srinivas, A., and Mordatch, I. Decision transformer: Reinforcement
learning via sequence modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, S., Dobriban, E., and Lee, J. A group-theoretic framework for data
augmentation. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,

142

https://doi.org/10.3758/BF03208291
https://doi.org/10.3758/BF03208291

and Lin, H. (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 21321–21333. Curran Associates, Inc., 2020a.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for
contrastive learning of visual representations. In International conference
on machine learning, pp. 1597–1607. PMLR, 2020b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709,
2020c. URL https://arxiv.org/abs/2002.05709.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. E. Big
self-supervised models are strong semi-supervised learners. In Advances in
neural information processing systems, volume 33, pp. 22243–22255, 2020d.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.
Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. arXiv preprint arXiv:1606.03657, 2016.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer networks in
unsupervised feature learning. In Gordon, G., Dunson, D., and Dudík, M.
(eds.), Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15, pp. 215–223. PMLR, 2011.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. Quantifying
generalization in reinforcement learning. arXiv preprint arXiv:1812.02341,
2019.

Cohen, T. and Welling, M. Group equivariant convolutional networks. In
International conference on machine learning, pp. 2990–2999, 2016a.

Cohen, T. and Welling, M. Group equivariant convolutional networks. pp.
2990–2999, 2016b.

Cohen, T. and Welling, M. Group equivariant convolutional networks. In
Proceedings of The 33rd International Conference on Machine Learning,
volume 48, pp. 2990–2999. PMLR, 2016c.

Cohen, T., Weiler, M., Kicanaoglu, B., and Welling, M. Gauge equivariant
convolutional networks and the icosahedral CNN. In Chaudhuri, K. and

143

https://arxiv.org/abs/2002.05709

Salakhutdinov, R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1321–1330, Long Beach, California, USA, 09–15 Jun 2019a.
PMLR. URL http://proceedings.mlr.press/v97/cohen19d.html.

Cohen, T. S. and Welling, M. Transformation properties of learned visual
representations. arXiv preprint arXiv:1412.7659, 2014.

Cohen, T. S. and Welling, M. Steerable CNNs. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=rJQKYt5ll.

Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. Spherical CNNs. arXiv
preprint arXiv:1801.10130, 2018.

Cohen, T. S., Geiger, M., and Weiler, M. A general theory of equivariant
CNNs on homogeneous spaces. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, volume 32, pp. 9145–9156. Curran
Associates, Inc., 2019b. URL https://proceedings.neurips.cc/paper/
2019/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf.

Coulom, R. Efficient selectivity and backup operators in monte-carlo tree
search. In International conference on computers and games, pp. 72–83.
Springer, 2006.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. Distributional
reinforcement learning with quantile regression. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Dangovski, R., Jing, L., Loh, C., Han, S., Srivastava, A., Cheung, B., Agrawal,
P., and Soljacić, M. Equivariant contrastive learning. arXiv preprint
arXiv:2111.00899, 2021.

Dangovski, R., Jing, L., Loh, C., Han, S., Srivastava, A., Cheung, B., Agrawal,
P., and Soljacic, M. Equivariant self-supervised learning: Encouraging equiv-
ariance in representations. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=gKLAAfiytI.

144

http://proceedings.mlr.press/v97/cohen19d.html
https://openreview.net/forum?id=rJQKYt5ll
https://openreview.net/forum?id=rJQKYt5ll
https://proceedings.neurips.cc/paper/2019/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf
https://openreview.net/forum?id=gKLAAfiytI

Dehmamy, N., Walters, R., Liu, Y., Wang, D., and Yu, R. Automatic
symmetry discovery with lie algebra convolutional network. Advances in
Neural Information Processing Systems, 34, 2021.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi, A., and Guibas,
L. J. Vector neurons: A general framework for so (3)-equivariant networks.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 12200–12209, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255. IEEE, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., and Houlsby, N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Repre-
sentations, 2021.

Downs, T. D. Orientation statistics. Biometrika, 59(3):665–676, 1972.

Du, W., Zhang, H., Du, Y., Meng, Q., Chen, W., Zheng, N., Shao, B., and
Liu, T.-Y. SE(3) equivariant graph neural networks with complete local
frames. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G.,
and Sabato, S. (eds.), Proceedings of the 39th International Conference on
Machine Learning, pp. 5583–5608, 2022. URL https://proceedings.mlr.
press/v162/du22e.html.

Du, Y. and Narasimhan, K. Task-agnostic dynamics priors for deep rein-
forcement learning. In International Conference on Machine Learning, pp.
1696–1705. PMLR, 2019.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Challenges of real-world
reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

145

https://proceedings.mlr.press/v162/du22e.html
https://proceedings.mlr.press/v162/du22e.html

Ermolov, A., Siarohin, A., Sangineto, E., and Sebe, N. Whitening for self-
supervised representation learning. In International Conference on Machine
Learning, pp. 3015–3024. PMLR, 2021.

Esteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis, K. Learning
so(3) equivariant representations with spherical cnns. pp. 52–68, 2018a.

Esteves, C., Allen-Blanchette, C., Zhou, X., and Daniilidis, K. Polar trans-
former networks. In International Conference on Learning Representations,
2018b. URL https://openreview.net/forum?id=HktRlUlAZ.

Falorsi, L., de Haan, P., Davidson, T. R., De Cao, N., Weiler, M., Forré, P.,
and Cohen, T. S. Explorations in homeomorphic variational auto-encoding.
arXiv preprint arXiv:1807.04689, 2018.

Fan, F., Yi, B., Rye, D., Shi, G., and Manchester, I. R. Learning stable
koopman embeddings. In 2022 American Control Conference (ACC), pp.
2742–2747. IEEE, 2022.

Finkelshtein, B., Baskin, C., Maron, H., and Dym, N. A simple and universal
rotation equivariant point-cloud network. arXiv preprint arXiv:2203.01216,
2022.

Finzi, M., Welling, M., and Wilson, A. G. A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups. arXiv
preprint arXiv:2104.09459, 2021.

Fraccaro, M., Kamronn, S., Paquet, U., and Winther, O. A disentangled recog-
nition and nonlinear dynamics model for unsupervised learning. Advances
in neural information processing systems, 30, 2017.

François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and Pineau,
J. An introduction to deep reinforcement learning. arXiv preprint
arXiv:1811.12560, 2018.

Friedman, J., Hastie, T., and Tibshirani, R. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets
for deep data-driven reinforcement learning, 2020.

146

https://openreview.net/forum?id=HktRlUlAZ

Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M. Se(3)-
transformers: 3d roto-translation equivariant attention networks. arXiv
preprint arXiv:2006.10503, 2020a.

Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M. Se(3)-transformers:
3d roto-translation equivariant attention networks. In Advances in Neural
Information Processing Systems 34 (NeurIPS), 2020b.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Bellemare, M. G.
Deepmdp: Learning continuous latent space models for representation
learning. In International Conference on Machine Learning, pp. 2170–2179.
PMLR, 2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E.
Neural message passing for quantum chemistry. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1263–
1272, International Convention Centre, Sydney, Australia, 06–11 Aug 2017a.
PMLR. URL http://proceedings.mlr.press/v70/gilmer17a.html.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural
message passing for quantum chemistry. In International Conference on
Machine Learning, pp. 1263–1272. PMLR, 2017b.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S., and Guo,
E. On differentiating parameterized argmin and argmax problems with
application to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

Grattarola, D. Deep feature extraction for sample-efficient reinforcement
learning. 2017.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E.,
Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. Bootstrap
your own latent-a new approach to self-supervised learning. Advances in
neural information processing systems, 33:21271–21284, 2020.

147

http://proceedings.mlr.press/v70/gilmer17a.html

Gruver, N., Finzi, M., Goldblum, M., and Wilson, A. G. The lie derivative
for measuring learned equivariance. arXiv preprint arXiv:2210.02984, 2022.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information
processing systems, 33:1474–1487, 2020.

Gu, A., Goel, K., Gupta, A., and Ré, C. On the parameterization and
initialization of diagonal state space models. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural Information Processing
Systems, 2022a. URL https://openreview.net/forum?id=yJE7iQSAep.

Gu, A., Goel, K., and Re, C. Efficiently modeling long sequences with struc-
tured state spaces. In International Conference on Learning Representations,
2022b. URL https://openreview.net/forum?id=uYLFoz1vlAC.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are as effective
as structured state spaces. Advances in Neural Information Processing
Systems, 35:22982–22994, 2022.

Haarnoja, T., Ajay, A., Levine, S., and Abbeel, P. Backprop kf: Learning dis-
criminative deterministic state estimators. Advances in neural information
processing systems, 29, 2016.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018a. URL https:
//proceedings.mlr.press/v80/haarnoja18b.html.

Haarnoja, T. et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality reduction by learning
an invariant mapping. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), volume 2, pp. 1735–
1742. IEEE, 2006.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

148

https://openreview.net/forum?id=yJE7iQSAep
https://openreview.net/forum?id=uYLFoz1vlAC
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and
Davidson, J. Learning latent dynamics for planning from pixels. In
International Conference on Machine Learning, pp. 2555–2565. PMLR,
2019b.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=
S1lOTC4tDS.

Han, Y., Hao, W., and Vaidya, U. Deep learning of koopman representation
for control. In 2020 59th IEEE Conference on Decision and Control (CDC),
pp. 1890–1895. IEEE Press, 2020.

Hansen, N. A., Su, H., and Wang, X. Temporal difference learning for model
predictive control. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., and Sabato, S. (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 8387–8406. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/hansen22a.html.

Hastie, T., Tibshirani, R., and Friedman, J. The elements of statistical
learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. Mask r-cnn. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9729–9738, 2020.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger,
D. Deep reinforcement learning that matters. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1), 2018.

149

https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
https://proceedings.mlr.press/v162/hansen22a.html
https://proceedings.mlr.press/v162/hansen22a.html

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,
W., Horgan, D., Piot, B., Azar, M., and Silver, D. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-second AAAI
conference on artificial intelligence, 2018.

Higgins, I., Amos, D., Pfau, D., Racanière, S., Matthey, L., Rezende, D. J.,
and Lerchner, A. Towards a definition of disentangled representations.
ArXiv, abs/1812.02230, 2018.

Hinton, G. E. and Parsons, L. M. Frames of reference and mental imagery.
Attention and performance IX, pp. 261–277, 1981.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. Transforming auto-encoders.
In International conference on artificial neural networks. Springer, 2011.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt,
H., and Silver, D. Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933, 2018.

Hua, W., Dai, Z., Liu, H., and Le, Q. Transformer quality in linear time.
In International Conference on Machine Learning, pp. 9099–9117. PMLR,
2022.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference
on machine learning, pp. 448–456. PMLR, 2015.

Iserles, A. A first course in the numerical analysis of differential equations.
Number 44. Cambridge university press, 2009.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. Spatial transformer
networks. Advances in neural information processing systems, 28, 2015.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D.,
and Kavukcuoglu, K. Reinforcement learning with unsupervised auxiliary
tasks. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=SJ6yPD5xg.

Jain, A. K., Sujit, S., Joshi, S., Michalski, V., Hafner, D., and Ebrahimi Kahou,
S. Learning robust dynamics through variational sparse gating. Advances
in Neural Information Processing Systems, 35:1612–1626, 2022.

150

https://openreview.net/forum?id=SJ6yPD5xg

Jang, E., Gu, S., and Poole, B. Categorical reparameterization with gumbel-
softmax. In International Conference on Learning Representations, 2017.

Jiang, J., Dun, C., Huang, T., and Lu, Z. Graph convolutional reinforcement
learning. In International Conference on Learning Representations, 2018.

Jiang, X., Chen, Q., Han, S., Li, M., Dong, J., and Zhang, R. When to
trust your model: Model-based policy optimization, 2020. URL https:
//openreview.net/forum?id=SkgPIpcGar. Submitted to NeurIPS 2019
Reproducibility Challenge.

Justesen, N. and Risi, S. Illuminating generalization in deep reinforce-
ment learning through procedural level generation. arXiv preprint
arXiv:1806.10729, 2018.

Kaba, S.-O., Mondal, A. K., Zhang, Y., Bengio, Y., and Ravanbakhsh, S.
Equivariance with learned canonicalization functions. In International
Conference on Machine Learning, pp. 15546–15566. PMLR, 2023.

Kaiser, E., Kutz, J. N., and Brunton, S. L. Data-driven discovery of koopman
eigenfunctions for control. Machine Learning: Science and Technology, 2
(3):035023, 2021.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H.,
Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., and Levine, S. Model-
based reinforcement learning for atari. arXiv preprint arXiv:1903.00374,
2019a.

Kaiser, Ł., Babaeizadeh, M., Miłos, P., Osiński, B., Campbell, R. H.,
Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., et al.
Model based reinforcement learning for atari. In International Conference
on Learning Representations, 2019b.

Khamsi, M. A. and Kirk, W. A. An Introduction to Metric Spaces and Fixed
Point Theory. John Wiley & Sons, 2011.

Kielak, K. P. Do recent advancements in model-based deep reinforcement
learning really improve data efficiency? 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

151

https://openreview.net/forum?id=SkgPIpcGar
https://openreview.net/forum?id=SkgPIpcGar

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural
relational inference for interacting systems. In International Conference on
Machine Learning, pp. 2688–2697. PMLR, 2018.

Kipf, T., van der Pol, E., and Welling, M. Contrastive learning of structured
world models. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=H1gax6VtDB.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representations
(ICLR), 2017.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao,
T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., and Girshick, R.
Segment anything. 2023.

Klein, F. A comparative review of recent researches in geometry. Bulletin of
the American Mathematical Society, 2(10):215–249, 1893.

Kofinas, M., Nagaraja, N. S., and Gavves, E. Roto-translated local coordinate
frames for interacting dynamical systems. In Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W. (eds.), Advances in Neural Informa-
tion Processing Systems, 2021. URL https://openreview.net/forum?
id=c3RKZas9am.

Köhler, J., Klein, L., and Noé, F. Equivariant flows: sampling configura-
tions for multi-body systems with symmetric energies. arXiv preprint
arXiv:1910.00753, 2019.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. SIAM Journal on
Control and Optimization, 42(4):1143–1166, 2000.

Kondor, R. and Trivedi, S. On the generalization of equivariance and convo-
lution in neural networks to the action of compact groups. arXiv preprint
arXiv:1802.03690, 2018.

Kondor, R., Son, H. T., Pan, H., Anderson, B., and Trivedi, S. Covariant com-
positional networks for learning graphs. arXiv preprint arXiv:1801.02144,
2018.

152

https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=c3RKZas9am
https://openreview.net/forum?id=c3RKZas9am

Koopman, B. O. Hamiltonian systems and transformation in hilbert space.
Proceedings of the National Academy of Sciences, 17(5):315–318, 1931.

Koopman, B. O. and Neumann, J. v. Dynamical systems of continuous
spectra. Proceedings of the National Academy of Sciences, 18(3):255–263,
1932.

Korda, M. and Mezić, I. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149–160,
2018. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.2018.
03.046. URL https://www.sciencedirect.com/science/article/pii/
S000510981830133X.

Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny
images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pp. 1097–1105, 2012.

Kulkarni, T. D., Whitney, W., Kohli, P., and Tenenbaum, J. B. Deep
convolutional inverse graphics network. arXiv preprint arXiv:1503.03167,
2015.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. An
empirical evaluation of deep architectures on problems with many factors of
variation. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pp. 473–480, 2007.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. Rein-
forcement learning with augmented data. arXiv preprint arXiv:2004.14990,
2020a.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive unsupervised
representations for reinforcement learning. In International Conference on
Machine Learning, pp. 5639–5650. PMLR, 2020b.

LeCun, Y., Bengio, Y., et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):
1995, 1995.

153

https://www.sciencedirect.com/science/article/pii/S000510981830133X
https://www.sciencedirect.com/science/article/pii/S000510981830133X

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. Set
transformer: A framework for attention-based permutation-invariant neural
networks. pp. 3744–3753, 2019.

Lee, T. Bayesian attitude estimation with the matrix fisher distribution on
so(3). IEEE Transactions on Automatic Control, 63(10):3377–3392, 2018.

Lenc, K. and Vedaldi, A. Learning covariant feature detectors. In European
conference on computer vision, pp. 100–117. Springer, 2016.

Lenssen, J. E., Fey, M., and Libuschewski, P. Group equivariant cap-
sule networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 31, pp. 8844–8853. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
c7d0e7e2922845f3e1185d246d01365d-Paper.pdf.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):
1334–1373, 2016a.

Levine, S. et al. End-to-end training of deep visuomotor policies. The Journal
of Machine Learning Research, 17(1):1334–1373, 2016b.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified theory of state
abstraction for mdps. ISAIM, 4:5, 2006.

Li, X., Li, R., Chen, G., Fu, C.-W., Cohen-Or, D., and Heng, P.-A. A
rotation-invariant framework for deep point cloud analysis. arXiv preprint
arXiv:2003.07238, 2020.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B. PointCNN: Convolution
on x-transformed points. pp. 820–830, 2018.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gon-
zalez, J., Jordan, M., and Stoica, I. Rllib: Abstractions for distributed
reinforcement learning. Proceedings of the 35th International Conference
on Machine Learning, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. Continuous control with deep reinforcement learning.
In Bengio, Y. and LeCun, Y. (eds.), ICLR, 2016.

154

https://proceedings.neurips.cc/paper/2018/file/c7d0e7e2922845f3e1185d246d01365d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c7d0e7e2922845f3e1185d246d01365d-Paper.pdf

Lin, L.-J. Reinforcement learning for robots using neural networks. Technical
report, Carnegie-Mellon Univ Pittsburgh PA School of Computer Science,
1993.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L. Microsoft coco: Common objects in context.
In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755.
Springer, 2014.

Liu, M., Yao, F., Choi, C., Sinha, A., and Ramani, K. Deep learning 3d
shapes using alt-az anisotropic 2-sphere convolution. 2018.

Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. Investigating bi-level
optimization for learning and vision from a unified perspective: A survey and
beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(12):10045–10067, 2021a.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., and Tang, J.
Self-supervised learning: Generative or contrastive. IEEE Transactions on
Knowledge and Data Engineering, 35(1):677–694, 2021b.

Lowe, D. G. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91–110, 2004.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and Mordatch, I. Plan
online, learn offline: Efficient learning and exploration via model-based
control. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=Byey7n05FQ.

Luo, S., Li, J., Guan, J., Su, Y., Cheng, C., Peng, J., and Ma, J. Equivariant
point cloud analysis via learning orientations for message passing. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 18932–18941, June 2022.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning for universal linear
embeddings of nonlinear dynamics. Nature communications, 9(1):1–10,
2018.

155

https://openreview.net/forum?id=Byey7n05FQ

Manay, S., Cremers, D., Hong, B.-W., Yezzi, A. J., and Soatto, S. Integral
invariants for shape matching. IEEE Transactions on pattern analysis and
machine intelligence, 28(10):1602–1618, 2006.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. Invariant and
equivariant graph networks. arXiv preprint arXiv:1812.09902, 2018.

Mauroy, A., Susuki, Y., and Mezić, I. Introduction to the koopman operator
in dynamical systems and control theory. The koopman operator in systems
and control: concepts, methodologies, and applications, pp. 3–33, 2020.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B. Long range language
modeling via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Mezić, I. Spectral properties of dynamical systems, model reduction and
decompositions. Nonlinear Dynamics, 41:309–325, 2005.

Mita, G., Filippone, M., and Michiardi, P. An identifiable double vae for
disentangled representations. In International Conference on Machine
Learning, pp. 7769–7779. PMLR, 2021.

Mitchell, T. M. Machine learning. McGraw-Hill, 1997.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013a.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. A. Playing atari with deep reinforcement learning.
CoRR, 2013b.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Pe-
tersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015a.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., and Kavukcuoglu, K. Asynchronous methods for deep reinforcement
learning. ICML, 2016.

156

Mnih, V. et al. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013c.

Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015b.

Mohlin, D., Sullivan, J., and Bianchi, G. Probabilistic orientation estimation
with matrix fisher distributions. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H. (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 4884–4893. Curran Associates, Inc.,
2020.

Mondal, A. K., Nair, P., and Siddiqi, K. Group equivariant deep reinforcement
learning. arXiv preprint arXiv:2007.03437, 2020.

Mondal, A. K., Jain, V., Siddiqi, K., and Ravanbakhsh, S. Eqr: Equivariant
representations for data-efficient reinforcement learning. In International
Conference on Machine Learning, pp. 15908–15926. PMLR, 2022.

Mondal, A. K., Panigrahi, S. S., Rajeswar, S., Siddiqi, K., and Ravanbakhsh, S.
Efficient dynamics modeling in interactive environments with koopman the-
ory. In The Twelfth International Conference on Learning Representations,
2023.

Mondal, A. K., Panigrahi, S. S., Kaba, O., Mudumba, S. R., and Ravanbakhsh,
S. Equivariant adaptation of large pretrained models. Advances in Neural
Information Processing Systems, 36, 2024.

Nguyen, H. H., Baisero, A., Klee, D., Wang, D., Platt, R., and Amato,
C. Equivariant reinforcement learning under partial observability. In
Conference on Robot Learning, pp. 3309–3320. PMLR, 2023.

Okada, M. and Taniguchi, T. Variational inference mpc for bayesian model-
based reinforcement learning. In Kaelbling, L. P., Kragic, D., and Sugiura,
K. (eds.), Proceedings of the Conference on Robot Learning, volume 100 of
Proceedings of Machine Learning Research, pp. 258–272. PMLR, 30 Oct–
01 Nov 2020. URL https://proceedings.mlr.press/v100/okada20a.
html.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

157

https://proceedings.mlr.press/v100/okada20a.html
https://proceedings.mlr.press/v100/okada20a.html

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

Popova, M., Isayev, O., and Tropsha, A. Deep reinforcement learning for de
novo drug design. Science Advances, 4(7):eaap7885, 2018.

Poulenard, A., Rakotosaona, M.-J., Ponty, Y., and Ovsjanikov, M. Effective
rotation-invariant point cnn with spherical harmonics kernels. In IEEE
International Conference on 3D Vision, pp. 47–56, 2019.

Puny, O., Atzmon, M., Smith, E. J., Misra, I., Grover, A., Ben-Hamu, H.,
and Lipman, Y. Frame averaging for invariant and equivariant network
design. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=zIUyj55nXR.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 652–660, 2017a.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. pp. 5099–5108, 2017b.

Quessard, R., Barrett, T. D., and Clements, W. R. Learning group structure
and disentangled representations of dynamical environments. arXiv preprint
arXiv:2002.06991, 2020.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable
visual models from natural language supervision. In International conference
on machine learning, pp. 8748–8763. PMLR, 2021.

Rao, Y., Lu, J., and Zhou, J. Spherical fractal convolutional neural networks
for point cloud recognition. pp. 452–460, 2019.

Ravanbakhsh, S., Schneider, J., and Poczos, B. Equivariance through
parameter-sharing. In International Conference on Machine Learning,
pp. 2892–2901. PMLR, 2017.

158

https://openreview.net/forum?id=zIUyj55nXR

Ravindran, B. and Barto, A. G. Symmetries and model minimization in
markov decision processes. Technical report, USA, 2001.

Ravindran, B. and Barto, A. G. Model minimization in hierarchical reinforce-
ment learning. In International Symposium on Abstraction, Reformulation,
and Approximation, pp. 196–211. Springer, 2002.

Ravindran, B. and Barto, A. G. Smdp homomorphisms: an algebraic approach
to abstraction in semi-markov decision processes. In Proceedings of the
18th international joint conference on Artificial intelligence, pp. 1011–1016,
2003.

Ravindran, B. and Barto, A. G. An algebraic approach to abstraction in
reinforcement learning. 2004.

Riba, E., Mishkin, D., Ponsa, D., Rublee, E., and Bradski, G. Kornia:
an open source differentiable computer vision library for pytorch. In
Winter Conference on Applications of Computer Vision, 2020. URL https:
//arxiv.org/pdf/1910.02190.pdf.

Rubinstein, R. Y. and Kroese, D. P. The cross-entropy method: a uni-
fied approach to combinatorial optimization, Monte-Carlo simulation, and
machine learning, volume 133. Springer, 2004.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations
by back-propagating errors. Nature, 323(6088):533–536, 1986.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing between cap-
sules. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 30, pp. 3856–3866. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
2cad8fa47bbef282badbb8de5374b894-Paper.pdf.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n) equivariant graph
neural networks. arXiv preprint arXiv:2102.09844, 2021.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

159

https://arxiv.org/pdf/1910.02190.pdf
https://arxiv.org/pdf/1910.02190.pdf
https://proceedings.neurips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt,
S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, 2020.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. Trust
region policy optimization. CoRR, abs/1502.05477, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal
policy optimization algorithms. ArXiv, abs/1707.06347, 2017a.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal
policy optimization algorithms, 2017b.

Schulman, J. et al. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017c.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A. C., and
Bachman, P. Data-efficient reinforcement learning with self-predictive
representations. In International Conference on Learning Representations,
2020.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A., and Bachman,
P. Data-efficient reinforcement learning with self-predictive representations.
In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=uCQfPZwRaUu.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T.,
Qin, C., Zidek, A., Nelson, A. W. R., Bridgland, A., et al. Improved protein
structure prediction using potentials from deep learning. Nature, 577(7792):
706–710, 2020.

Shaj, V., Becker, P., Büchler, D., Pandya, H., van Duijkeren, N., Taylor,
C. J., Hanheide, M., and Neumann, G. Action-conditional recurrent kalman
networks for forward and inverse dynamics learning. In Conference on
Robot Learning, pp. 765–781. PMLR, 2021.

Shakerinava, M. and Ravanbakhsh, S. Equivariant networks for pixelized
spheres. In International Conference on Machine Learning, pp. 9477–9488.
PMLR, 2021.

160

https://openreview.net/forum?id=uCQfPZwRaUu

Shakerinava, M., Mondal, A. K., and Ravanbakhsh, S. Structuring represen-
tations using group invariants. Advances in Neural Information Processing
Systems, 35:34162–34174, 2022.

Shalev-Shwartz, S. and Shashua, A. Safe, multi-agent, reinforcement learning
for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Shawe-Taylor, J. Building symmetries into feedforward networks. In 1989
First IEE International Conference on Artificial Neural Networks, (Conf.
Publ. No. 313), pp. 158–162, 1989.

Shepard, N. and Metzler, J. Mental rotation of three-dimensional objects.
Science, pp. 701–703, 1971.

Shi, H. and Meng, M. Q.-H. Deep koopman operator with control for nonlinear
systems. IEEE Robotics and Automation Letters, 2022.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy with online
planning. In 5th Annual Conference on Robot Learning, 2021. URL
https://openreview.net/forum?id=1GNV9SW95eJ.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G.
V. D., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., and Lanctot,
M. Mastering the game of go with deep neural networks and tree search.
Nature, 550:354–359, 2017a.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354–359, 2017b.

Silver, D. et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

Simm, G. N., Pinsler, R., Csányi, G., and Hernández-Lobato, J. M. Symmetry-
aware actor-critic for 3d molecular design. arXiv preprint arXiv:2011.12747,
2020.

Song, L., Wang, J., and Xu, J. A data-efficient reinforcement learning method
based on local koopman operators. In 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2021.

161

https://openreview.net/forum?id=1GNV9SW95eJ

Srinivas, A., Laskin, M., and Abbeel, P. Curl: Contrastive unsupervised
representations for reinforcement learning. In International Conference on
Machine Learning, 2020.

Stooke, A. and Abbeel, P. rlpyt: A research code base for deep reinforcement
learning in pytorch. arXiv preprint arXiv:1909.01500, 2019.

Sukhbaatar, S., Fergus, R., et al. Learning multiagent communication with
backpropagation. In Advances in neural information processing systems,
pp. 2244–2252, 2016.

Sutskever, I. Training recurrent neural networks. University of Toronto
Toronto, ON, Canada, 2013.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27,
2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction.
MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. Policy gradi-
ent methods for reinforcement learning with function approximation. In
Advances in neural information processing systems, 2000.

Tai, K. S., Bailis, P., and Valiant, G. Equivariant transformer networks.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 6086–6095. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/tai19a.html.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pp.
6105–6114. PMLR, 2019.

Tasfi, N. Pygame learning environment. GitHub repository, 2016.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden,
D., Abdolmaleki, A., Merel, J., Lefrancq, A., et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

162

https://proceedings.mlr.press/v97/tai19a.html

Taylor, J. Lax probabilistic bisimulation. 2008.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):
2319–2323, 2000.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley,
P. Tensor field networks: Rotation-and translation-equivariant neural
networks for 3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview coding. arXiv
preprint arXiv:1906.05849, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez, S., Merel, J.,
Erez, T., Lillicrap, T., Heess, N., and Tassa, Y. dm_control: Software and
tasks for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-
9638. doi: https://doi.org/10.1016/j.simpa.2020.100022. URL https://
www.sciencedirect.com/science/article/pii/S2665963820300099.

Vadgama, S., Tomczak, J. M., and Bekkers, E. J. Kendall shape-VAE :
Learning shapes in a generative framework. In NeurIPS 2022 Workshop
on Symmetry and Geometry in Neural Representations, 2022. URL https:
//openreview.net/forum?id=nzh4N6kdl2G.

van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling, M. Plannable
approximations to mdp homomorphisms: Equivariance under actions. In
Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, pp. 1431–1439, 2020a.

van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., and Welling, M.
Mdp homomorphic networks: Group symmetries in reinforcement learning.
Advances in Neural Information Processing Systems, 33:4199–4210, 2020b.

van der Pol, E., van Hoof, H., Oliehoek, F. A., and Welling, M. Multi-agent
mdp homomorphic networks. arXiv preprint arXiv:2110.04495, 2021.

163

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://openreview.net/forum?id=nzh4N6kdl2G
https://openreview.net/forum?id=nzh4N6kdl2G

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforcement learning with
double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 30, 2016.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use parametric mod-
els in reinforcement learning? Advances in Neural Information Processing
Systems, 32:14322–14333, 2019.

Vapnik, V. Statistical learning theory. Wiley-Interscience, 1998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. Attention is all you need. Advances in neural
information processing systems, 30, 2017a.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. Attention is all you need. Advances in neural
information processing systems, 30, 2017b.

Villar, S., Hogg, D. W., Storey-Fisher, K., Yao, W., and Blum-Smith, B.
Scalars are universal: Equivariant machine learning, structured like classical
physics. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=ba27-RzNaIv.

Vinyals, O., Bengio, S., and Kudlur, M. Order matters: Sequence to sequence
for sets. In International Conference on Learning Representations, 2015.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

Wang, D., Walters, R., and Platt, R. SO(2)-equivariant reinforcement learning.
In International Conference on Learning Representations.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon,
J. M. Dynamic graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG), 2019a.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon,
J. M. Dynamic graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5):1–12, 2019b.

164

https://openreview.net/forum?id=ba27-RzNaIv

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas,
N. Dueling network architectures for deep reinforcement learning. arXiv
preprint arXiv:1511.06581, 2015.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas,
N. Dueling network architectures for deep reinforcement learning. In
International conference on machine learning, pp. 1995–2003. PMLR, 2016.

Wanner, M. and Mezic, I. Robust approximation of the stochastic koopman
operator. SIAM Journal on Applied Dynamical Systems, 21(3):1930–1951,
2022.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning, 8(3):279–292,
1992.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M. Embed to
control: A locally linear latent dynamics model for control from raw images.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, 2015.

Weiler, M. and Cesa, G. General e(2)-equivariant steerable cnns. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/
paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf.

Weiler, M. and Cesa, G. General e (2)-equivariant steerable cnns. Advances
in Neural Information Processing Systems, 32, 2019b.

Weiler, M. and Cesa, G. General e(2)-equivariant steerable cnns. In Advances
in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019c.

Weiler, M., Hamprecht, F. A., and Storath, M. Learning steerable filters for
rotation equivariant cnns. pp. 849–858, 2018.

Weissenbacher, M., Sinha, S., Garg, A., and Yoshinobu, K. Koopman q-
learning: Offline reinforcement learning via symmetries of dynamics. In
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp.

165

https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf

23645–23667. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/weissenbacher22a.html.

Williams, G., Aldrich, A., and Theodorou, E. Model predictive path integral
control using covariance variable importance sampling, 2015. URL https:
//arxiv.org/abs/1509.01149.

Williams, G., Drews, P., Goldfain, B., Rehg, J. M., and Theodorou, E. A.
Information-theoretic model predictive control: Theory and applications
to autonomous driving. IEEE Transactions on Robotics, 34(6):1603–1622,
2018.

Winter, R., Bertolini, M., Le, T., Noe, F., and Clevert, D.-A. Unsupervised
learning of group invariant and equivariant representations. In Oh, A. H.,
Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in Neural Infor-
mation Processing Systems, 2022. URL https://openreview.net/forum?
id=47lpv23LDPr.

Wood, J. and Shawe-Taylor, J. Representation theory and invariant neural
networks. Discrete applied mathematics, 69(1-2):33–60, 1996.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. Har-
monic networks: Deep translation and rotation equivariance. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5028–5037, 2017a.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. In-
terpretable transformations with encoder-decoder networks. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 5726–5735,
2017b.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. 3d
shapenets: A deep representation for volumetric shapes. pp. 1912–1920,
2015.

Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Wei, Y., Dai, Q., and Hu, H. On
data scaling in masked image modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10365–10374,
2023.

166

https://proceedings.mlr.press/v162/weissenbacher22a.html
https://proceedings.mlr.press/v162/weissenbacher22a.html
https://arxiv.org/abs/1509.01149
https://arxiv.org/abs/1509.01149
https://openreview.net/forum?id=47lpv23LDPr
https://openreview.net/forum?id=47lpv23LDPr

Yarats, D., Kostrikov, I., and Fergus, R. Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. In Inter-
national Conference on Learning Representations, 2021a. URL https:
//openreview.net/forum?id=GY6-6sTvGaf.

Yarats, D., Kostrikov, I., and Fergus, R. Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. In Inter-
national Conference on Learning Representations, 2021b. URL https:
//openreview.net/forum?id=GY6-6sTvGaf.

Yarotsky, D. Universal approximations of invariant maps by neural networks.
Constructive Approximation, 55(1):407–474, 2022.

Yi, B. and Manchester, I. R. On the equivalence of contraction and koopman
approaches for nonlinear stability and control. IEEE Transactions on
Automatic Control, 2023.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances
in neural information processing systems, pp. 6410–6421, 2018.

Yüceer, C. and Oflazer, K. A rotation, scaling, and translation invariant
pattern classification system. Pattern recognition, 26(5):687–710, 1993.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R.,
and Smola, A. J. Deep sets. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 30, pp. 3391–3401.
Curran Associates, Inc., 2017a. URL http://papers.nips.cc/paper/
6931-deep-sets.pdf.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R.,
and Smola, A. J. Deep sets. pp. 3391–3401, 2017b.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Barlow
twins: Self-supervised learning via redundancy reduction. arXiv preprint
arXiv:2103.03230, 2021.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling vision transform-
ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12104–12113, 2022.

167

https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf
http://papers.nips.cc/paper/6931-deep-sets.pdf
http://papers.nips.cc/paper/6931-deep-sets.pdf

Zhang, B., Mao, Z., Liu, W., and Liu, J. Geometric reinforcement learning
for path planning of uavs. Journal of Intelligent & Robotic Systems, 77(2):
391–409, 2015.

Zhang, Y., Hare, J., and Prügel-Bennett, A. Overcoming the disentangle-
ment vs reconstruction trade-off via jacobian supervision. arXiv preprint
arXiv:2002.02886, 2020a.

Zhang, Z., Hua, B.-S., Rosen, D. W., and Yeung, S.-K. Rotation invariant
convolutions for 3d point clouds deep learning. In IEEE International
Conference on 3D Vision, pp. 204–213, 2019a.

Zhang, Z., Hua, B.-S., and Yeung, S.-K. Shellnet: Efficient point cloud
convolutional neural networks using concentric shells statistics. pp. 1607–
1616, 2019b.

Zhang, Z., Hua, B.-S., Chen, W., Tian, Y., and Yeung, S.-K. Global context
aware convolutions for 3d point cloud understanding. arXiv preprint
arXiv:2008.02986, 2020b.

Zhavoronkov, A. et al. Deep learning enables rapid identification of potent
ddr1 kinase inhibitors. Nature Biotechnology, 37(9):1038–1040, 2019.

Zinkevich, M. and Balch, T. Symmetry in markov decision processes and its
implications for single agent and multi agent learning. In In Proceedings of
the 18th International Conference on Machine Learning. Citeseer, 2001.

168

	I Introduction and Background
	Introduction
	Thesis Outline
	Preview of Main Results and Insights

	Background
	Machine Learning and Deep Learning
	Groups and their representation theory
	Equivariance in Deep Learning
	Markov Decision Processes
	Reinforcement Learning
	MDP Homomorphism
	Symmetric MDPs

	Deep Reinforcement Learning

	II Leveraging Known Symmetry Transformations
	Group Equivariant Deep Reinforcement Learning
	Related Work
	Background
	E(2)-equivariant convolution
	Choice of group and feature fields

	Equivariance in RL
	Equivariance in Vectorized Policies
	Choice of the Environment
	Equivariant Deep Q-Network Design
	Network Architecture

	Experiments
	Discussion

	Equivariance Through Canonicalization
	Canonicalization Functions
	General Formulation
	Partial Canonicalization

	Design of Canonicalization Functions
	Euclidean Group

	Experiments
	Image classification
	N-body dynamics prediction
	Point cloud classification and segmentation

	Related Works
	Discussion

	Equivariant Adaptation of Large Pretrained Models
	Deeper Dive Into Canonicalization
	Learning Canonicalization, Augmentation and Alignment
	Canonicalization Prior

	Image Experiments
	Classification
	Instance Segmentation
	Reinforcement Learning

	Point Cloud Experiments
	Discussion

	III Learning Structured Representations
	Equivariant Representations using Loss Constraints on Lie Groups
	Desiderata for Symmetry-Based Representation in RL
	Implementing parameterization

	Symmetry Enforcing Loss Functions
	Application to Model-free RL
	Putting it All Together

	Experiments
	Related work
	Discussion

	Equivariant Representations using Group Invariants
	Actions in the latent space matter more in equivariant models
	Symmetry Regularization Objectives
	Practical Implementation

	Experiments
	Qualitative Analysis
	Quantitative Evaluation in Downstream Tasks

	Related Works
	Discussion

	Learning representations using Koopman Theory
	Background
	Koopman Theory for Dynamical Systems
	Approximate Koopman with Control Input

	Dynamics Model
	Linear Latent Dynamics Model
	Diagonalization, Efficiency and Stability of the Koopman Operator

	Dynamics modeling in RL and Planning
	Forward dynamics modeling in RL
	Koopman Self-Predictive Representations
	Model-based Planning
	Koopman TDMPC

	Experiments
	Long-Range Dynamics Modeling with Control
	Koopman Dynamics Model for RL and Planning

	Related Work
	Discussion

	IV Concluding Remarks
	Conclusion and Future Work

