
Why Wasserstein distance is better for training

GANs: A summary

Arnab Mondal, School of Computer Science

McGill University, Montreal

Fall, 2019

Term Paper

COMP 599 (Mathematical Techniques for Machine Learning)

Instructor Prof. Prakash Panangaden

c©Arnab, 20/12/2019



Abstract

This term paper explores the effect of different distance metrics in the space of probabil-

ity distribution on the training of generative models, especially GANs. The first chapter

starts with some theoretical insights on the well-known distances used and shows which

distance GAN actually minimizes. The second chapter dives into the theoretical under-

standing of the problems of training GANs and gives some insights into the manifold

of the generator probability distribution. The final chapter concludes how Wasserstein

distance is theoretically a better metric than other distances. The paper derives heavily

from original work on GAN and Wasserstein GAN. Rather than writing the proofs which

can be found in the referred articles or providing practical tricks, more focus has been

given on establishing the general idea and how we can improve the model mathemati-

cally. To maintain the coherence and uniformity of notations, some of the theorems and

their proofs might look different than what has been proposed in the original papers.
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Chapter 1

Generative Adversarial Networks

In the last five years, there has been a growing interest in generative modelling of data,

and two of the fundamental models in this field are Variational Autoencoders(VAEs) [4]

and Generative Adversarial Networks(GANs) [3]. It is interesting to see that the architec-

ture of their generator doesn’t change significantly as for both the cases we first sample

from a simple prior z ∼ p(z) and then output our generated image gθ(z) where gθ is a

neural network parameterized by θ. The principal difference lies in how gθ is trained.

Mathematically speaking, we want new samples from real distribution Pr, and the prob-

lem we are trying to solve is rather than estimating the density of Pr which may not exist,

we try to make Pg, the distribution of generated samples from gθ, resemble distribution Pr

as closely as possible by changing θ. For this, we need a notion of closeness between two

distributions that we can minimize, which we are going to define in the following section.

Note that the ability to easily generate samples is often more useful than knowing the nu-

merical value of the density in most of the practical problems like image super-resolution.

1.1 Distance and divergence between distributions

Before we start defining different distances and divergences, let us define the space we

are working on. Let X be a compact metric set (in this case, the space of images [0, 1]d,
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which has d pixels) and let
∑

be the set of all Borel subsets of X which is essentially the

σ-algebra. Now we have Pg,Pr ∈ M(X ), where M(X ) denote the space of probability

measures defined on X . Let’s also assume Pg and Pr to be absolutely continuous with

respect to a measure µ defined on X and therefore have densities Pr(x) and Pg(x). What

absolute continuity means is that, ∀A ∈
∑

if µ(A) = 0 =⇒ Pr(A) = 0 & Pg(A) = 0

and only then ∀A ∈
∑

we can write Pr(A) =
∫
A
Pr(x)dµ(x) & Pg(A) =

∫
A
Pg(x)dµ(x)

where Pr(x) and Pg(x) are measurable functions known as probability densities. Now we

are ready to define different elementary distances and divergences between Pg and Pr:

• Total Variation (TV) distance :

δ(Pg,Pr) = sup
A∈

∑ |Pg(A)− Pr(A)| (1.1)

which is informally the largest possible difference between the probability that two

probability measures can assign to the same event in the σ-algebra.

• Kullback-Leibler (KL) divergence :

KL(Pr||Pg) =

∫
X

log(
Pr(x)

Pg(x)
)Pr(x)dµ(x) (1.2)

It is interesting to note that it has a unique minimum at Pg = Pr and it doesn’t require

knowledge of unknown Pr(x). The second statement is true because minimizingKL

divergence is essentially maximizing the log likelihood of the our data (x(1), .., x(m))

which given by:

max
θ

1

m

i=1∑
m

logPθ(x
(i)) (1.3)

where Pθ is the density of a parameterized distribution Pθ. In our case it is Pg which

depends on the parameters of the generator. This duality can be easily proved by
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writing:

min

∫
X

log(
Pr(x)

Pg(x)
)Pr(x)dµ(x) =⇒ max

∫
X

log(Pg(x))Pr(x)dµ(x)) (1.4)

Now all that is left is applying the law of large numbers to the expression we ob-

tained above. It is also interesting to note how this divergence is not symmetrical.

In the divergence equation if Pr(x) > 0 but Pg(x) → 0, the integrand inside the KL

grows to infinity while when Pr(x)→ 0 and Pg(x) > 0 the KL term goes to 0 mean-

ing the cost function assigns high cost for generator distribution not covering parts

of true distribution while it is not efficient when we generate fake-looking sample.

Now, if we would minimize KL(Pr||Pg), the whole effect would be reversed, and

we would pay a high cost for generating fake-looking samples. Note that as VAE

focus on maximizing the approximate likelihood of the examples, they share the

limitation of the standard model.

• Jensen-Shannon (JS) divergence :

JS(Pr,Pg) = KL(Pr||Pm) +KL(Pg||Pm) (1.5)

where Pm is the average (Pr+Pg)/2. This provide a middle ground between the two

individual cost functions. In the next section we will see how the GANs actually

optimize this objective.

Let us wait for the Wasserstein distance until the last chapter when we formally define

optimal transport.In the next section let’s try to get a mathematical outlook of the losses

in GAN and their optimal values.
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1.2 Losses in Vanilla GAN

This section is derived heavily from the original work on GANs by Goodfellow et al. [3]

Before we start let us write the loss of a GAN:

min
gθ

max
dφ

L(gθ, dφ) = Ex∼Pr(x)[log dφ(x)] + Ex∼Pg(x)[log(1− dφ(x))] (1.6)

here gθ and dφ are clearly parameterized generator and discriminator. It can be noted that

the first term has no impact on the gθ during optimizer update. Now to obtain the optimal

value of the discriminator we need to maximize the following:

L(gθ, d
∗
φ) = max

dφ

∫
x

(Pr(x) log dφ(x) + Pg(x) log(1− dφ(x)))dx (1.7)

Now it isn’t hard to see with a bit of calculus (if we differentiate the term inside the

integral and set it to 0) that the best value of the discriminator is d∗φ(x) = Pr(x)
Pr(x)+Pg(x)

∈ [0, 1].

Now this leads us to the next question what is the global optimum. We see that when

both gθ and dφ are at their optimal values, we have Pg(x) = Pr(x) and d∗φ(x) = 1/2 and

substituting that in the above equation gives us L(g∗θ , d
∗
φ) = −2 log 2. If we write down

the expression of JS(Pr,Pg) and plug in the value of L(gθ, d
∗
φ) =

∫
x
(Pr(x) log Pr(x)

Pr(x)+Pg(x)
+

Pg(x) log Pg(x)

Pr(x)+Pg(x)
)dx we get:

L(gθ, d
∗
φ) = JS(Pr,Pg)− 2 log 2 (1.8)

This means that the GAN generator essentially optimizes the JS divergence when the dis-

criminator achieves optimality. The next chapter presents the major problems of training

GANs.

4



Chapter 2

Problems with training GANs

Although GANs have achieved massive success in real looking image generation, train-

ing them is not easy. There are multiple reasons which contribute to making it slow and

unstable. Below I have listed some of the major problems:

• Finding Nash equilibrium: As mention in Salimans et al. [6], when two models are

trained simultaneously to find a Nash equilibrium to a two-player non-coperative

game, updating the gradients concurrently doesn’t guarantee convergence. One

beautiful example of this which I found in the paper is: suppose one player mini-

mizes xy with respect to x and another player minimizes −xy with respect to y then

gradient descent doesn’t converge to x = y = 0.

• Low dimensional support:Though the dimension of real-world images seem high but

their support lies in lower dimensional manifold. This makes the distribution Pr

and Pg almost certainly disjoint which makes it easy for the discriminator to find its

optimum. This leads us to our next problem.

• Vanishing Gradients: If the discriminator reaches its optimal solution the gradient of

loss function drops down to zero making the learning very slow.
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• Mode collapse: The generator may get stuck in a setting where it always produces

same outputs. Even though it manages to trick the discriminator it fails to represent

complex real world image distribution which has high variety.

We are going to deal with the problem of Low dimensional support and vanishing gra-

dients theoretically in this chapter(Note that mode collapse is not being covered in this

papers). The next sections would be heavily derived from the excellent theoretical pa-

per by Martin Arjovsky and Leon Bottou [1]. In the next section, we’ll see some of the

theorems they proposed.

2.1 The Perfect discriminator

From experimental results it has been found that even when the samples are remarkably

good and their supports are likely to intersect, the discriminator loss quickly goes to 0

which either imply disjoint supports or the distributions are not absolutely continuous.

I want to digress a bit to absolute continuity of random variable to see how it compare

with the absolute continuity of measures. The property of a random variable X being

absolutely continuous is equivalent to X having a density function f : X → R such that

P(X ∈ A) =
∫
A
f(x)dx which is a consequence of Radon-Nikodym theorem. A random

variable with support in low dimensional manifold will not be absolutely continuous.

This can be seen by taking M a low dimensional manifold to be support of X but since

M has 0 Lebesgue measure in X for it to be absolutely continuous P(X ∈ M) = 0 which

contradicts our initial assumption. There is empirical and theoretical evidence given by

Narayanan & Mittter [5] that Pr is indeed concentrated in low dimensional manifold.

Now it can be shown that for well behaved function gθ we have the support of Pg in

lower dimension give the prior distribution space Z have lower dimension that X . This

can be formally written in the following lemma:

Lemma 2.1. Let gθ : Z → X be a function composed of affine transformations and pointwise

nonlinearities which can be either be rectifiers, leaky rectifiers or any smooth strictly increasing
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functions. Then, gθ(Z) is contained in a countable union of manifolds of dimension at most dim

Z .

The proof of this lemma is non-trivial, interesting to read and can be found in the ap-

pendix A of Arjovsky et al. [1] Now we want to show that given support of Pr and Pg

are disjoint or lie in low dimensional manifolds, there is always a perfect discriminator

between them. Note that our discriminator dφ : X → [0, 1] is accurate if it takes value 1

on a set that contains the support of Pr and value 0 on a set that contains the support of

Pg. Now we state a very important theorem for the disjoint support case:

Theorem 2.1. If two distributions Pr and Pg have support contained on two disjoint compact

subsets Mr and Mg respectively, then there is a smooth optimal discrimator d∗φ : X → [0, 1] that

has accuracy 1 and∇xd
∗
φ(x) = 0 ∀x ∈Mr ∪Mg.

Proof. Let us consider d(Mr,Mg) = ε > 0 be the distance between two sets as Mr and

Mg are disjoint & compact. We can construct two other compact and disjoint sets M ′
r =

{x : d(x,Mr) ≤ ε/3} and M
′
g = {x : d(x,Mg) ≤ ε/3}. Note that we could have chosen

anything> ε/2 for the margin. By Urysohn’s smooth lemma there exist a smooth function

d∗φ : X → [0, 1] such that d∗φ(x)|x∈M ′r = 1 and d∗φ(x)|x∈M ′g = 0. For the second part let us

consider an open ball Bε/3(x) around x ∈ Mr which gives d∗φ(x)|x∈Bε/3(x) = 1 and hence

∇xd
∗
φ(x) = 0. Analogously for x ∈Mg.

Our goal now is to show that when two manifold have lower dimensional support

and they intersect we still have a perfect discriminator. But before that, we look into

some definitions and Lemmas of the alignment of manifolds. I have directly taken them

from Arjovsky et al. [1] and formulated in my way for our setting. The proofs of Lemma

2.2 and 2.3 can be found in the Appendix A of their paper. An important thing to note

which the authors haven’t clarified properly is that the manifolds we are dealing with

here are assumed to be smooth differentiable manifolds which may not be the case for

supports of real world data. Nevertheless it gives us convenience to prove things.

Definition 2.1. Let M1 and M2 be two boundary free regular submanifolds of X . Let x ∈
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M1 ∩M2 be an intersection point of the two manifolds. M1 and M2 intersect transversally

in x if TxM1 + TxM2 = TxX , where TxM means the tangent space of M around x.

Definition 2.2. Two manifolds without boundary M1 and M2 perfectly align if there is

an x ∈ M1 ∩M2 such that M1 and M2 don’t intersect transversally in x. Note that two

manifolds M1 and M2 (with or without boundary) perfectly align if any of the boundary

free manifold pairs (Int M1, Int M2), (Int M1, ∂M2), (∂M1, Int M2) or (∂M1, ∂M2) perfectly

align where the boundary and interior of a manifold M by ∂M and Int M respectively.

Lemma 2.2. Let M1 and M2 be two regular submanifolds of X that don’t have full dimension. Let

η1 and η2 be arbitrary independent continuous random variables. Therefore define the perturbed

manifolds as M̃1 = M1 + η1 and M̃2 = M2 + η2. Then

Pη1,η2(M̃1 doesn
′t perfectly align with M̃2) = 1

Lemma 2.3. Let M1 and M2 be two regular submanifolds of X that don’t have full dimension

and don’t perfectly align. . Let L = M1 ∩M2. If M1 and M2 don’t have boundary, then L is also

a manifold, and has strictly lower dimension than both M1 and M2. If they have boundary, L is

a union of at most 4 strictly lower dimensional manifolds. In both cases, L has measure 0 in both

M1 and M2.

Informally Lemma 2.2 and 2.3 tells us that we can safely assume that in practice two lower

dimensional submanifold of a higher dimensional space never perfectly align which re-

sults in their intersection be in further lower dimension and have a measure 0. We are

going to use it in the last theorem of this section about existence of perfect discriminator.

Theorem 2.2. Let Pr and Pg be two distributions that have support contained in two closed man-

ifolds Mr and Mg that don’t perfectly align and don’t have full dimension. We further assume that

Pr and Pg are absolutely continuous in their respective manifolds. Then, there exists an optimal

discriminator d∗φ : X → [0, 1] that has accuracy 1 and for almost any x in Mr or Mg, d∗φ is smooth

in a neighbourhood of x and∇xd
∗
φ(x) = 0
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Proof. Clearly by absolute continuity we have Pr(L) = 0 and Pg(L) = 0 which implies

support of Pr is in Mr \ L and that of Pg is in Mg \ L. Now as X \Mg is an open set, for

every x ∈ Mr \ L there exist a ball of radius εx such that Bεx(x) ∩Mg = φ. Let us define

M̂r =
⋃
x∈Mr\LBεx/3(x) and M̂g analogously. By construction they are open sets in X and

support of Pr & Pg are in them. Also notice that M̂r ∩ M̂p = φ. Now we can use similar

reasoning as in theorem 2.1 and prove the rest.

2.2 Vanishing Gradients

In the previous section we saw that how the optimal discriminator becomes perfect which

makes its gradient 0 almost everywhere. In this section we want to see what happens

when we pass the gradients from discriminator to the generator. The following theorem

makes it clear and note that ||dφ|| = supx∈X |dφ(x)|+ ||∇xdφ(x)||2:

Theorem 2.3. If the conditions of Theorem 2.1 or Theorem 2.2 are satisfied, ||dφ − d∗φ|| < ε and

Ez∼p(z)[||Jθgθ(z)||22] ≤ k where Jθ is the jacobian, then:

||∇θEz∼p(z)[log(1− dφ(gθ(z)))]||2 < k
ε

1− ε
(2.1)

The proof is straightforward using Jensen’s inequality & chain rule which can be found in

[1]. Note the condition Ez∼p(z)[||Jθgθ(z)||22] ≤ k is trivially verified for a uniform prior and

neural network based generator where k would depend on θ. To show that the gradients

of the generator vanishes as discriminator approaches it’s optimum we take ||dφ − d∗φ|| →

0:

lim
||dφ−d∗φ||→0

∇θEz∼p(z)[log(1− dφ(gθ(z)))] = 0 (2.2)

Researcher have also tried taking gradient of ∇θEz∼p(z)[− log(dφ(gθ(z)))] but it’s mathe-

matically not a good option either as shown in Theorem 2.5 and 2.6 in [1].
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Chapter 3

Wasserstein GAN

In the last chapter, we have seen all the theoretical problems of GAN training result-

ing from a lower-dimensional manifold of distributions and their disjoint support. One

way to tackle this problem is to artificially spread out the distribution and create higher

chances for two probability distributions to have overlap by adding continuous noises

onto the inputs of the discriminator dφ. This works well in practice. Though there are

many practical techniques that can be incorporated for training GANs as discussed in

Saliman et al. [6] but we are more interested in dealing with the distance between dis-

tributions side of thing, as discussed a bit in chapter 1. As beautifully shown through

a toy example of learning parallel lines in Arjovsky et al. [2] that when the supports are

disjoint or are in lower-dimensional manifold the TV distance, KL and JS divergences are

maxed out, discontinuous and primarily the target distribution cannot be learned from

them using gradients descent. This is what tells us that we need a softer metric and also

some notion of distance between points in manifolds. Before I introduce the Wasserstein

metric, let us take a brief look at the crucial concepts of transport theory.
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3.1 Optimal Transport and Wasserstein distance

Below I am going to present the Monge’s Problem and how Kantorovich changed it. Let

us define the setting for our problem. Let (X , µ) and (Y , ν) be two probability spaces and

c : [X, Y ]→ [0,+∞] be a cost function. Note that the meaning of the space denoted by X

has changed in this section.

Monge’s Problem The problem asks us to find a measurable Transport function T : X → Y

such that ν = µ ◦ T−1 is the pushforward measure and
∫
X c(x, T (x))dµ is minimized. This is

equivalent to transport a mass from one distribution to another with a cost assigned for

each unit of mass transported. Kantorovich came up with an always solvable version of

this problem where he replaced the transport function with transport plan. Next we see

the definition of coupling and Monge-Kantorovich’s Problem.

Coupling. Coupling µ and ν means constructing two random variables X and Y on some prob-

ability space (σ,P) in such a way that law(X) = µ and law(X) = ν. Both the couple (X, Y ) and

law of (X, Y ) are called coupling of (µ, ν). Without loss of generality one can choose σ = X × Y

such that coupling µ and ν means constructing a measure π on X × Y such that π have µ and ν

as marginals on X and Y .

Monge-Kantorovich’s Problem The problem asks us to find a transport plan instead, which is

essentially a coupling π ∈ Π(µ, ν), where Π denote the set of all coupling, such that K(π) =∫
X×Y c(x, y)dπ is minimized.

In Polish probability spaces(i.e. complete, separable, metric) X of images [0, 1]d with a

metric D and two probability measures Pr and Pg, the Earth-Mover(EM) or Wasserstein-1

distance is defined as:

W (Pr,Pg) = inf
π∈Π(Pr,Pg)

∫
X×X
D(x, y)dπ (3.1)

where Π(Pr,Pg) denotes the set of all joint distributions π whose marginals are Pr and Pg.

This distance is basically the cost of optimal transport plan. Also in such well behaved

spaces, the Kantorovich Duality(which is essentially a dual problem we solve and can
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be found in details in [7]) reduces to Kantorovich-Rubenstein duality ( This is the link

to an amazing post where the author uses numerical methods to formulate and show the

duality in discrete probability space and proved it in continuous space. It’s worth a read.):

inf
π∈Π(Pr,Pg)

∫
X×X
D(x, y)dπ = sup

||f ||L≤1

(

∫
X
fdPr −

∫
X
fdPg) (3.2)

As infimum in the left hand side of above equation is highly intractable so obtaining the

sup on the right hand side is a better solution. Now note that the function f : X → R is

1-Lipschitz. A real valued function is called K-Lipschitz continuous if there exist a real

constant K ≥ 0 such that ∀x1, x2 ∈ R, |f(x1) − f(x2)| ≤ K|x1 − x2|. Now we restrict the

function to K-Lipschitz continuous then we end maximizing K × W (Pr,Pg). Now let,

fww∈W be the family of all K-Lipschitz for some K, then our problem boils down to:

max
w∈W

Ex∼Pr [fw(x)]− Ez∼p(z)[fw(gθ(z))] (3.3)

If the above expression achieves maximum for some w ∈ W , it would yield a calculation

of W (Pr,Pg) upto a multiplicative constant. Now if we differentiate W (Pr,Pg) with re-

spect to θ and backpropagate through the generator to minimize the distance that should

hopefully lead us to the generator optimum. It has been shown by Theorem 3 of Arjovsky

et al. [2] that indeed there exists a solution of f and the gradient of the loss with respect

to generator parameters is well defined there. Note that to maintain K-Lipschitz continu-

ity of fw during the training Arjovsky proposed an impressive practical trick that is after

gradient update clamp the weight w to a small window resulting in compact parameter

spaceW and thus fw gets bounded. Still it suffers unstable training because of the weight

clipping which result in slow convergence or vanishing gradient depending on the size

of the window. The next section I’ll discuss and conclude why the Wasserstein distance

is better than other distances.
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3.2 Continuity of Wasserstein distance

Let Pgθ be the distribution we are trying to learn by optimizing the parameter θ of gθ. Our

entire problem of making generative models converge with tradition KL divergence or

JSD lies with the fact that, given the low dimensional support of Pr, the distance or diver-

gence is maxed out almost everywhere in X and jumps to minima 0 when Pgθ = Pr. But

what we want is continuity in the mapping θ → Pgθ because it is equivalent to making

the loss ρ(Pgθ ,Pr) continuous where ρ is the metric in the space of distributions. Then we

can ideally run gradient descent and converge to the optimum. Note that this distance ρ

should preferably induce a weaker topolgy. In the appendix A and proof of Theorem 2

of Arjovsky et al. [2] there is an outstanding discussion on how KL induce the strongest

topology, followed by JSD and TV, and Wasserstein distance induces the weakest. Now I

am going to state the theorem of continuity and differentiability of Wasserstein distance

and an important assumption that we need for differentiability. The proofs are given

in [2]:

Assumption 3.1. Let g : Z ×Rdθ → X be locally Lipschitz. We say g satisfies the assumption for

a certain probability distribution p over Z if there are local Lipschitz constants L(θ, z) such that

Ez∈p[L(θ, z)] < +∞.

Theorem 3.1. Let g : Z × Rdθ → X be a function, that will be denoted by gθ(z) with z the first

coordinate and θ the second.

1. If g is continuous in θ, so is W (Pr,Pgθ).

2. If g is locally Lipschitz and satisfies the assumption 3.1, then W (Pr,Pgθ) is continuous every-

where, and differentiable almost everywhere.

3. Statements 1-2 are false for JS and all KLs divergences.

Now Arjovsky showed in the paper that for any feed forward neural network gθ follow

assumption 3.1 and hence the W (Pr,Pgθ) for them is continuous everywhere, and dif-

ferentiable almost everywhere. This completes our understanding of why theoretically

using Wasserstein distance is better for generative learning of distribution.
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